Fachverband für Strahlenschutz e. V.

Mitgliedschaft der
International Radiation Protection Association (IRPA)
für die Bundesrepublik
Deutschland und die Schweiz

Fachverband
für Strahlenschutz e. V.

Chronik 1966 - 2000
Fachverband für Strahlenschutz e. V.

Mitgliedschaft der
International Radiation Protection Association (IRPA)
für die Bundesrepublik Deutschland und die Schweiz

Publikationsreihe FORTSCHRITTE IM STRAHLENSCHUTZ
Publication Series PROGRESS IN RADIATION PROTECTION

Fachverband für Strahlenschutz e. V.

Chronik 1966 - 2000
Liebe Kolleginnen und Kollegen!

Die Chronik soll nicht nur einen Überblick über die Schwerpunkte der FS-Arbeit geben und sie chronologisch einordnen. Sie ist auch zur Werbung für neue Mitglieder gedacht, können sich doch alle derzeitigen Arbeitskreise mit ihren wichtigsten Themen darstellen.

Liebe Kolleginnen und Kollegen, ich habe mich bereit erklärt, mit Ihrer Hilfe in zweijährigem Abstand die Chronik zu überarbeiten. Für Anregungen aus dem Leserkreis bin ich jederzeit dankbar. Die entsprechende e-mail-Adresse ist dbecker@bfs.de.

Salzgitter, Februar 2000

Ihr Dietrich E. Becker
Inhaltsverzeichnis

1. Die Präsidenten ...
 1.1 Vorwort des neuen Präsidenten ..
 1.2 Der Altpräsident zum Ende seiner Amtszeit

2. Vorstand und Direktorium ...

3. Arbeitskreissekretäre ...

4. Was ist der Fachverband? ...
 4.1 Entwicklung ...
 4.2 Aufgaben und Ziele ..
 4.3 Arbeitskreise ...
 4.4 Publikationen ...
 4.5 Mitgliedschaft im FS ...
 4.6 Vereinsstatistik ..
 4.7 Finanzen ..
 4.8 Präsidenten des Fachverbandes für Strahlenschutz
 4.9 Sekretäre ..
 4.10 Schatzmeister ..
 4.11 Mitglieder des Direktoriums ..
 4.12 Ehrenmitglieder ...
 4.13 Der FS im Internet ...

5. FS und GAST ..

6. FS und IRPA - eine enge Beziehung ...

7. VSS, die Arbeit der Vereinigung für Strahlenschutzforschung

8. StrahlenschutzPraxis - die Zeitschrift des Fachverbandes

9. Die Arbeitskreise des Fachverbandes
 9.1 Arbeitskreis „Ausbildung“ (AKA) ..
 9.2 Arbeitskreis „Beförderung“ (AKB)
 9.3 Arbeitskreis „Dosismessung externer Strahlung“ (AKD) ...
 9.4 Arbeitskreis „Entsorgung“ (AKE)
 9.5 Arbeitskreis „Inkorporationsüberwachung“ (AKI)
 9.6 Arbeitskreis „Nachweisgrenzen“ (AKSIGMA)
 9.7 Arbeitskreis „Nichtionisierende Strahlung“ (AKNIR)
 9.8 Arbeitskreis „Notfallschutz“ (AKN)
 9.9 Arbeitskreis „Praktischer Strahlenschutz“ (AKP)
 9.10 Arbeitskreis „Rechtsfragen“ (AKR)
 9.11 Arbeitskreis „Strahlenwirkung - Strahlenbiologie“ (AKS)
 9.12 Arbeitskreis „Umweltüberwachung“ (AKU)
 9.13 Arbeitskreis „Uranbergbau und radioactive Abfälle“ (AKURA)
 9.14 Arbeitskreis „FRANCOPHONE“ (AKF)

10. Der Fachverband im Kerntechnischen Ausschuss (KTA)

11. Strahlenschutz-Museum ..
 11.1 Geräteinventar des Strahlenschutzmuseums
 11.2 FS-Strahlenschutz-Museum - Antiquarischer Bücherbestand

12. Tagungen und Seminare des Fachverbandes und der IRPA
13. Publikationen des Fachverbandes

13.1 Gesamtverzeichnis

13.2 FS Jubiläen etc. (FS anniversaries etc.)

13.3 Allgemeine Strahlenschutzfragen (General topics of radiation protection)

13.4 Altlasten, Radon, Uran (Mining residues, Radon, Uranium)

13.5 Ausbildung (Education)

13.6 Beschleuniger (Accelerator)

13.7 Dekontamination (Decontamination)

13.8 Arbeitsplatzüberwachung (Monitoring of workplaces)

13.9 Dosimetrie externer Strahlung (Dosimetry of External Radiation)

13.10 Gesetzgebung (Regulations)

13.11 Medizinischer Strahlenschutz (Medical radiation protection)

13.12 Entsorgung (Waste management)

13.13 Inkorporationsüberwachung (Incorporation monitoring)

13.14 Messtechnik (Measuring techniques)

13.15 Nichtionisierende Strahlung (Non-ionizing radiation)

13.16 Notfallschutz (Emergency Planning)

13.17 Öffentlichkeitsarbeit (Public Relations)

13.18 Radioökologie (Radioecology)

13.19 Tschernobyl (Chernobyl)

13.20 Umweltüberwachung (Environmental Monitoring)

13.21 Strahlenbiologie, Strahlenwirkungen (Radiation Biology)

13.22 Weltraum (Space)

13.23 Beförderung (Transport)

13.24 Praktischer Strahlenschutz (Radiation Protection)
1. Die Präsidenten

1.1 Vorwort des neuen Präsidenten 2000/2001 (Klaus Henrichs)

In dieser Broschüre stellt sich der deutsch-schweizerische Fachverband für Strahlenschutz mit seiner Geschichte, seinen Zielen und Gremien vor. In den mehr als drei Jahrzehnten seines Bestehens hat sich der Fachverband (nach USA und Frankreich) zum drittgrößten Mitgliedsverband der IRPA entwickelt; er ist auf nahezu allen Gebieten des Strahlenschutzes aktiv und hat sich durch die Expertise und den Einsatz zahlreicher Mitglieder nicht nur in Fachkreisen hohes Ansehen erworben.

Wichtigstes Instrument der Verbandsarbeit sind die 14 Arbeitskreise (AK), in denen ein intensiver Erfahrungsaustausch sowie eine wertvolle interne Weiterbildung stattfinden. Mit Hilfe dieser Arbeitskreise hat der Fachverband sich zu allen wichtigen Entwicklungen auf dem Gebiet des Strahlenschutzes zu Wort gemeldet und durch konstruktive Gremienarbeit eine Vielzahl unterschiedlicher Vorschriften im Sinne effizienter, praxisnaher Regelungen mitgestaltet.

Seit Mitte 1996 betreibt der FS eine eigene Webseite im Internet: http://www.fs.fzk.de

Weiterhin ist der Fachverband aktiv bei der Erstellung des kerntechnischen Regelwerkes im Unterausschuss "Strahlenschutztechnik" beteiligt und bemüht sich, die Tradition des Strahlenschutzes durch die Schaffung einer Strahlenschutzausstellung in Zusammenarbeit mit dem Bundesamt für Strahlenschutz aufrechtzuerhalten.

1.2 Der Altpräsident zum Ende seiner Dienstzeit 1998/1999 (Hansheiri Brunner)

Kontakte zu den Arbeitskreisen

Zusammenarbeit mit Schwestergesellschaften

Ausblick auf IRPA-10

Diskussion über „Controllable Dose“ und Überprüfung bisheriger Konzepte des Strahlenschutzes

Ethik und Strahlenschutz

In beiden Fällen erscheinen mir Charakter, Erziehung, gute Vorbilder und Ausbildung wirksamer als Regeln und Vorschriften.

Auswirkungen politischer Veränderungen auf den Strahlenschutz in Deutschland
Erst das kommende Jahr wird zeigen, wie weit sich in Deutschland die politischen Veränderungen auf den Strahlenschutz auswirken werden. Bis jetzt bleiben unsere Vorbehalte bestehen, auch wenn es etwas optimistischer stimmen mag, dass die neue SSK doch noch mehrheitlich bisherige Mitglieder und damit ausgewiesene Fachleute umfasst, und dass die ideologisch geprägten neuen Mitglieder nicht zum extremen fundamentalistischen Flügel gehören dürften. Warten wir ab, wie die neuen EU-Richtlinien umgesetzt werden. Der Fachverband ist darauf vorbereitet, seinen Beitrag dazu zu leisten und seine Meinung zu sagen.

Ausblick und Abschied
2. Vorstand und Direktorium

Präsident
Dr. Klaus Henrichs
Siemens AG
Unternehmensreferat Strahlenschutz
Otto-Hahn-Ring 6, D-81730 München
Tel. ++49-89-63640183,
Fax ++49-89-63640162
e-mail:KLAUS.HENRICHS@MCHP.SIEMENS.DE

Vizepräsident
Dipl.-Phys. Hansheiri Brunner
Möhrlistraße 26
CH-8006 Zürich
Tel./Fax ++41-1-3623014
e-mail: hansbbrunner@gmx.net

Informationsbeauftragter / Redaktionsleitung
Dr. Rupprecht Maushart
Pappelweg 38, D-75334 Straubenhardt
Tel. ++49-7082-40246
Fax ++49-7082-40206
e-mail: maushart@csi.com

Schatzmeister
Dipl.-Phys. Dieter Borchardt
Hahn-Meitner-Institut Berlin GmbH
Abt. Strahlenschutz
Glienicker Str. 100, D-14199 Berlin
Tel. ++49-30-8062 2217
Fax ++49-30-8062 2099
e-mail: Borchardt@HMI.de

Sekretär
Frau Dipl.-Phys. Renate Czarwinski
Postfach 66 02 20, D-10267 Berlin
Tel. ++49-30-50922-531
Fax ++49-30-50922-200 und –332
Mobiltelefon: ++49 171 7902897
e-mail: RCzarwinski@BfS.de

Weitere Direktoriumsmitglieder

Dr. Paul Günther FISCHER
Landesanstalt für Arbeitsschutz NRW
Uhlenbergstraße 127 - 129
D-40225 Düsseldorf
Tel. ++49-211-3101-2258
Fax ++49-211-3101-2272
e-mail: Fischer@LAFA.NRW.de

Prof. Dr. Anton BAYER,
Bundesamt für Strahlenschutz
Ingolstädter Landstr. 1
D-85764 Oberschleißheim
Tel. ++49-89-31603-230
Fax ++49-89-31603-270
e-mail: abayer@bfs.de

Dr. Dietmar Zappe
Gesellschaft für Anlagen- und Reaktorsicherheit
Kurfürstendamm 200, D-10719 Berlin
Tel. ++49-30-88589-185
Fax ++49 30-88589-111
e-mail: ZAD@grs.de

Dr. Hans-Jürgen PFEIFFER
Hauptabteilung für die Sicherheit von Kernanlagen (HSK)
CH-5232 Villigen HSK
Tel. ++41-56-310-3841
Fax ++41-56-310-3907
e-mail: Hans.Pfeiffer@hsk.psi.ch

Kontaktadresse für Internet:
Wolfgang.Tachlinski@hs.fzk.de

Kontaktadresse Strahlenschutz-Museum
DBecker@BfS.de
3. Arbeitskreissekretäre

AK "Ausbildung" (AKA)
Dr. Hans-Gerrit Vogt,
Zentrum für Strahlenschutz und Radioökologie
Universität Hannover, Am Kleinen Feld 30, D-30167 Hannover
Tel. ++49-511-762-3321,
Fax ++49-511-762-3319
email: vogt@mbox.zsr.uni-hannover.de

AK "Beförderung" (AKB)
Or. Ingrid WEITZENFELDER;
Siemens AG, Unternehmensreferat Strahlenschutz
Paul-Gossen-Str. 100, D-91052 Erlangen
Tel. ++49-9131-732338;
Fax ++49-9131-187209
email: ingrid.weitzenfelder@mchp.siemens.de

AK "Dosismessung externer Strahlung" (AKO)
01. Ronald NEUHAUS,
Siemens AG
Otto-Hahn-Ring 6, 0-81730 München
Tel. ++49-89-636-40168,
Fax ++49-89-636-40162
e-mail: Ronald.Neuhaus@MCHP.SIEMENS.DE

AK "Entsorgung" (AKE)
Or. Gerd Georg Eigenwillig,
Siemens AG,.KWU NS-B
Postfach 10 1063, 0-63010 Offenbach
Tel. ++49-69-807 3668, Fax ++49-69-807 4022
e-mail: Gerd.Eigenwillig@off1.siemens.de

AK "Inkorporationsüberwachung" (AKI)
Dr. Klaus Henrichs,
Siemens AG, Unternehmensreferat Strahlenschutz
Otto-Hahn-Ring 6, D-81730 München
Tel. ++49-89-6364 0183,
Fax ++49-89-6364 0162
e-mail: Klaus.Henrichs@MCHP.SIEMENS.DE

AK "Notfallsschutz" (AKN)
Prof. Dr. Anton BAYER,
Bundesamt für Strahlenschutz,
Ingolstädter Landstr. 1
D-85764 Oberschleißheim
Tel. ++49-89-31603-230,
Fax ++49-89-31603-270
e-mail: abayer@bfs.de

AK "Praktischer Strahlenschutz" (AKP)
Dr. Barbara STOLZE,
Landesanstalt f. Personendosimetrie u. Strahlenschutzausbildung LPS,
Waldowallee 115, D-10318 Berlin
Tel. ++49-30-5001 3428,
Fax ++49-30-5001 3440
e-mail: Stoize@LPS-berlin.de

AK "Rechtsfragen" (AKR)
Kommissarisch:
Dipl. Krist. Thomas Philipp
Thüringer Landesverwaltungsamt
Weimarplatz 4, D-99423 Weimar
Tel. ++49-3643 58 7842,
Fax ++49-3643 58 7848
e-mail: tom.philipp@arcormail.de

AK "Strahlenwirkung-Strahlenbiologie" (AKS)
Dr. Dr. med. Günther Heinemann
Lochwaldweg 11,
D-70771 Leinfelden-Echterdingen
Tel. ++49-711-7942-4444,
Fax ++49-711-7942-466
e-mail: heinemann@z.zgs.de

AK "Umweltüberwachung" (AKU)
Dipl.-Phys. Alfred NEU,
Landesanstalt für Umweltschutz
Baden-Württemberg, Hertzstr. 173,
D-76187 Karlsruhe
Tel. ++49-721-983-2226,
Fax ++49-721-983-2339
e-mail: klaus_kirchhoff@t-online.de

AK "Nachweisgrenzen" (AKSIGMA)
Prof. Dr. Klaus Kirchhoff,
Saarstr. 16, D-30173 Hannover
Tel. ++49-511-880874, Fax ++49-511-880874
e-mail: klaus_kirchhoff@t-online.de

AK "Uranbergbau und radioaktive Altlasten" (AKURA)
Dr. Eckard Ettenhuber,
Bundesamt für Strahlenschutz,
Köpenicker Allee 120 - 130, D-10318 Berlin
Tel. ++49-30-50922 301,
Fax ++49-30-50922 300
e-mail: ettenhuber@bfs.de

AK "Francophone" (SFRP)
Dr. Christophe Murith, BAG/SUE R,
Physikinst. Univ. CH-1700 Fribourg
Tel. ++41-263009165, Fax ++41-263009743
e-mail: Christophe.Murith@bag.admin.ch

Fax ++49-221-3778 723
e-mail: Krause.Norbert@bgfe.de
4. Was ist der Fachverband?

Der Fachverband für Strahlenschutz e.V. ist eine Vereinigung von Strahlenschutzfachleuten und -praktikern aus dem deutschsprachigen Raum. Er hat sich die Förderung des Strahlenschutzes als Wissenschaft und als Beruf zum Ziel gesetzt. Er ist erreichbar unter:

Telefon:	++49-30-50922-531 und Mobiltelefon: ++49 171 7902897
Fax:	++49-30-50922-200 und -332
e-mail:	RCzarwinski@BfS.de
Internet:	http://www.fs.fzk.de

Was will der Fachverband?

den Schutz gegen die schädlichen Wirkungen ionisierender und nicht ionisierender Strahlen pflegen und fördern im Interesse der Allgemeinheit und des öffentlichen Gesundheitswesens als Aufgabe der Wissenschaft und Forschung.

4.1 Entwicklung

Im Jahre 1964 bildeten die im deutschsprachigen Raum wohnenden Mitglieder der amerikanischen HEALTH PHYSICS SOCIETY (HPS) die Zentral-europäische Sektion der HPS. Diese wurde 1966 bei der Gründung der IRPA, der INTERNATIONAL RADIATION PROTECTION ASSOCIATION, als FACHVERBAND FÜR STRAHLENSCHUTZ e. V. (FS) eine selbständige Gesellschaft. Der FS vertritt Deutschland und die Schweiz in der Dachorganisation IRPA. An der Jubiläumsjahrestagung 1991 in Aachen vereinigte sich der FS mit der Vereinigung für Strahlenforschung und Strahlenschutz (VSS) der ehemaligen DDR.

4.2 Aufgaben und Ziele

Was bietet der Fachverband?

- Nationalen und internationalen Erfahrungsaustausch
- Tagungen, Weiterbildung
- Informationsaustausch mit Fachkollegen in den 14 Arbeitskreisen
- Kontakte zu anderen Verbänden, Behörden
- Koordinierte Stellungnahmen
- Die Zeitschrift Strahlenschutz PRAXIS - erscheint 4 mal jährlich

Wie wird man Mitglied im Fachverband?

Der FS hat derzeit über 1 400 Einzelmitglieder aus vielen Teilen der Welt und 33 fördernde Firmenmitglieder. Seine Mitglieder arbeiten in Großforschungszentren, Universitäten, staatlichen Forschungsanstalten, Industrie (Produktion und Forschung), Behörden, Ingenieurbüros, kärntechischen Anlagen, Fachschulen, medizinische Einrichtungen u. a.

FS-Mitglieder erhalten die Zeitschrift Strahlenschutz PRAXIS sowie die Berichte der Jahrestagungen und die meisten anderen Publikationen des FS kostenlos zugestellt.

Wie arbeitet der Fachverband?

- **Verbandsnachrichten und Veröffentlichungen**

Seit Anfang 1995 informiert die vierteljährlich erscheinende Fachzeitschrift "Strahlenschutz PRAXIS" mit einer Auflagenstärke von etwa 3000 Exemplaren sowohl zu einem Schwerpunktthema als auch aktuell über das weltweite Strahlenschutzgeschehen.

Weiterhin ist der Fachverband aktiv bei der Erstellung des kerntechnischen Regelwerkes im Kerntechnischen Ausschuß (KTA) im Unterausschuß "Strahlenschutztechnik" beteiligt und bemüht sich, die Geschichte des Strahlenschutzes durch die Schaffung einer Strahlenschutzausstellung in Zusammenarbeit mit dem Bundesamt für Strahlenschutz (BfS) darzustellen und zu dokumentieren.

- **Tagungen**

4.3 Arbeitskreise

Wichtigste Mittel für den ständigen Erfahrungs- und Informationsaustausch sind die gegenwärtig 14 Arbeitskreise:

4.4 Publikationen

4.5 Mitgliedschaft im FS

Der FS hat derzeit 1 452 Einzelmitglieder aus vielen Teilen der Welt und 33 fördernde Firmenmitglieder. Seine Mitglieder arbeiten in Großforschungszentren, Universitäten, staatlichen Forschungsanstalten, Industrie (Produktion und Forschung), Behörden, Ingenieurbüros, Kernkraftwerken, Fachschulen, Medizin u. a.

Antragsformulare für die Mitgliedschaft sowie die Satzung des FS können beim Sekretär angefordert bzw. im Internet abgerufen werden.

4.6 Vereinsstatistik (Dieter Borchardt, Renate Czarwinski)

 Mitgliederentwicklung

![Diagramm der Mitgliederentwicklung von 1969 bis 1997]
Der Fachverband für Strahlenschutz hat zu Beginn der Jahres 1997 etwa 1422 Mitglieder, überwiegend aus Deutschland und der Schweiz.

<table>
<thead>
<tr>
<th>Mitgliederzahlen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
</tr>
<tr>
<td>Schweiz</td>
</tr>
<tr>
<td>Österreich</td>
</tr>
<tr>
<td>Andere Länder</td>
</tr>
</tbody>
</table>

Strahlenschutz ist keine Sache des Alters.

Unser ältestes Mitglied ist 92, das jüngste 25 Jahre alt.
4.7 Finanzen

(Renate Czarwinski)

Der FS ist als gemeinnützig anerkannt, weil er satzungsgemäß den "Schutz gegen die schädliche Wirkung ionisierender Strahlen" fördert. (Alle Zahlen betreffen das Jahr 1997)

Wir finanzieren uns überwiegend aus Mitgliederbeiträgen. Der normale Mitgliedsbeitrag beträgt 100,00 DM bzw. 84,00 SFR. Mitglieder im Ruhestand erhalten eine erhebliche Ermäßigung. Einen wesentlichen Anteil haben jedoch auch fördernde Mitglieder, dies sind Firmen und Institutionen mit Bezug zum Strahlenschutz.

Neben bescheidenen Zinseinkünften tragen auch Über- schüsse aus Tagungen zu unserem Budget bei.

Für weitere Informationen wenden Sie sich bitte an den Schatzmeister (email: borchardt@hmi.de)
4.8 Präsidenten des Fachverbandes für Strahlenschutz

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Name, Stelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 1966</td>
<td>Dr. Klaus Becker, Jülich (CES)</td>
</tr>
<tr>
<td>1966 + 67</td>
<td>Prof. Dr. Hans Kiefer, Karlsruhe</td>
</tr>
<tr>
<td>1968</td>
<td>Dipl. Phys. Serge Prêtre, Zürich</td>
</tr>
<tr>
<td>1969</td>
<td>Prof. Dr. Wolfgang Jacobi, Berlin</td>
</tr>
<tr>
<td>1970 + 71</td>
<td>Dr. Rupprecht Maushart, Wildbach (Neu: Amtsdauer 2 Jahre)</td>
</tr>
<tr>
<td>1972 + 73</td>
<td>Dr. Guelfo Poretti, Bern</td>
</tr>
<tr>
<td>1974 + 75</td>
<td>Dr. Johannes Mehl, Bonn</td>
</tr>
<tr>
<td>1976 + 77</td>
<td>Dr. Herbert Jacobs, Jülich</td>
</tr>
<tr>
<td>1978 + 79</td>
<td>Prof. Werner Feldt, Hamburg</td>
</tr>
<tr>
<td>1980 + 81</td>
<td>Dr. Werner Hunzinger, Bern</td>
</tr>
<tr>
<td>1982 + 83</td>
<td>Prof. Dr. Rudolf Nieder, Berlin</td>
</tr>
<tr>
<td>1984 + 85</td>
<td>Dr. Arnold Spang, Erlangen</td>
</tr>
<tr>
<td>1986 + 87</td>
<td>Dr. Klaus Goebel, Genf</td>
</tr>
<tr>
<td>1988 + 89</td>
<td>Prof. Dr. Walter Kolb, Braunschweig</td>
</tr>
<tr>
<td>1990 + 91</td>
<td>DP Jürgen Narrog, Stuttgart</td>
</tr>
<tr>
<td>1992 + 93</td>
<td>PD Dr. Jean-François Valley, Lausanne</td>
</tr>
<tr>
<td>1994 + 95</td>
<td>DP Winfried Koelzer, Karlsruhe</td>
</tr>
<tr>
<td>1996 + 97</td>
<td>Dr. Dietrich E. Becker, Deisenhofen</td>
</tr>
<tr>
<td>1998 + 99</td>
<td>DP Hanshein Brunner, Zürich</td>
</tr>
<tr>
<td>2000 + 01</td>
<td>Dr. Klaus Henrichs, München</td>
</tr>
</tbody>
</table>
Die Präsidenten des Fachverbandes Strahlenschutz

Klaus Becker 1966
H. Kiefer 1967
S. Prêtre 1968
W. Jacobi 1969

R. Maushart 1970/71
G. Poretti 1972/73
J. Mehl 1974/75
H. Jacobs 1976/77

W. Feldt 1978/79
W. Hunzinger 1980/81
R. Neider 1982/83
A. Spang 1984/85

K. P. Goebel 1986/87
W. Kolb 1988/89
J. Narrog 1990/91
J. F. Valley 1992/93

W. Koelzer 1994/95
D. E. Becker 1996/97
H. Brunner 1998/99
K. Henrichs 2000/01
4.9 Sekretäre

bis 7.66 Dr. Johannes Mehl, Bonn (CES)
1966 - 68 Dr. Herbert Jacobs, Jülich
1997 - Dipl.-Phys. Renate Czarwinski, Berlin

4.10 Schatzmeister

1969 - 90 Prof. Dr. Jürgen Hacke, Berlin
1991 - Dipl.-Phys. Dieter Borchart, Berlin

4.11 Mitglieder des Direktoriums

D Dr. Johannes Mehl, Bonn. 1966 - 1968
CH Dr. Herbert Lüthy, Basel 1966 - 1968
D Dr. Herbert Jacobs, Jülich 1969 - 1975
D Prof. Werner Feldt, Hamburg 1969 - 1973
Ch Dr. Fritz Alder, Würenlingen 1969 - 1975
D Dr. Heinz Kriegl, Neuherberg 1971 - 1975
D Prof. Dr. Karl Aurand, Berlin 1975 - 1976
CH Dr. Werner Hunzinger 1975 - 1978
D Prof. Dr. Dr. Erich Oberhausen 1977 - 1980
D Dr. Horst Schieferdecker 1977 - 1980
D Prof. Dr. Walter Kolb 1977 - 1982
CH DP. Serge Prêtre 1979 - 1982
D Dipl.-Ing. Wolfgang Bentele 1981 - 1984
D Prof. Dr. Ludwig Rausch 1981 - 1984
CH Dr. Klaus Goebel 1983 - 1984
CH Prof. Dr. Hans Kiefer 1983 - 1986
CH PD Dr. Jean-Francois Vallet 1986 - 1988
D Dr. Ruprecht Maushart 1985 - 1988
D DP Jürgen Narro 1985 - 1988
D DP Winfried Koelzer 1987 - 1990
CH Dr. Hansruedi Völkle 1989 - 1992
D Dr. Dietrich E. Becker 1989 - 1992
D DP Manfred Winter 1989 - 1992
D Dr. Sigwart Hiller 1991 - 1992
CH DP Christian Wernli 1993 - 1996
D DP Renate Czarwinski 1993 - 1996
D Prof. Dr. Birgit Dörschel 1993 - 1996
D Dr. DR. Günter Heinermann 1993 - 1994
D Dr. Klaus Henrichs 1995 - 1998
D DI Ursula Kastl, Huglfing 1997 - 1998
CH Dr. Hans-Jürgen Pfeiffer 1997 - 2000
D Dr. Paul G. Fischer 1997 - 2000
D Dr. Dietmar Zappe, Berlin 1999 - 2000
D Prof. Dr. Anton Bayer, München 1999 - 2000

chro2000.doc
4.12 Ehrenmitglieder

Prof. Dr. Reinhard Barke
Prof. Dr. Otto Huber
Prof. Dr. Yasus Nishiwaki
Dr. Peter Courvolisier (1996 verstorben)
Prof. Dr. Jürgen Hacke
Prof. Dr. Karl Morgen (1993 verstorben)
Prof. Dr. Werner Schüttmann
Dr. Rupprecht Maushart

4.13 Der FS im Internet

(Winfried Koelzer, Wolfgang Tachlinski)

Anfang 2000 besteht unser Auftritt aus 251 deutschen und 20 englischen „Seiten“.

Fachverband für Strahlenschutz e.V.
Mitgliedsgesellschaft der International Radiation Protection Association (IRPA)
für die Bundesrepublik Deutschland und die Schweiz

Wir über uns • Vorstand • Sekretariat • Arbeitskreise • Termine •

• Veröffentlichungen
• StrahlenschutzPRAXIS
• Tagungen
• Surfbrett Strahlenschutz
• Arbeitsplätze

News
In der Aufbauphase war es vorrangig, die Ziele des Fachverbandes darzustellen und seine Tätigkeitsbereiche insbesondere durch eine Detailländerstellung der FS-Arbeitskreise der Öffentlichkeit zu vermitteln.

Die dritte Phase mit dem Ziel, die Inhalte des Web-Auftrittes künftig im Sinne von aktueller Information mit direktem Nutzen für Mitglieder und Öffentlichkeit auszubauen ist zur Zeit im Gange. So wurde u. a. eine Rubrik „News“, eine Seite für Stellenmarkt, ein Bereich für die Aufnahme der Hauszeitschrift StrahlenschutzPraxis sowie Bereiche für Stellungnahmen zu aktuellen Themen und Terminveröffentlichungen der Arbeitskreise eingerichtet. Aktualität und Nutzen wurden auch durch die Volltextveröffentlichung der überarbeiteten Fassung des Seminars über die Novellierung der Strahlenschutzverordnung aufgrund der neuen Euratom Grundnormen (155 A4-Seiten als PDF-Datei), ebenso wie durch die inzwischen 2. veröffentlichte Fassung der FS-Stellungnahme zu den Entwürfen der neuen StrSchV erhöht.

Die Internet-Betreuer werden im Zuge dieser Phase sowohl die „Gestaltung“ der Seiten, insbesondere der Homepage und der Themenstruktur, als auch die Erweiterung der Technischen Möglichkeiten, z. B. für Diskussionsforen, geschützte Bereiche für Arbeitskreise etc. als Zukunftsaufgabe angehen. In diesem Zusammenhang wird zur Zeit der Aufbau einer vom Forschungszentrum unabhängigen www-Site unter eigener Internet-Adresse erwogen.

Aufruf zur Mitarbeit!
Das Medium Internet lebt von der Aktualität. Daher die ganz große Bitte der Betreuer: Informationen, Daten, Aktualisierungen liefern – aber bitte zeitgemäß, d. h. elektronisch. Nutzen Sie die auf jeder Internet-Seite angegebene Kontaktadresse oder senden Sie die Infos und Daten per e-mail an:

* tachlinski@hs.fzk.de oder koelzer@hs.fzk.de.*
5. **FS und GAST**

(Jürgen Narrog)

Die Bezeichnung "GAST" ist die offizielle Abkürzung des Gemeinschaftsausschusses Strahlenforschung, einer Vereinigung der/des

- Deutschen Gesellschaft für Biophysik
- Deutschen Gesellschaft für Medizinische Physik
- Deutschen Gesellschaft für Nuklearmedizin
- Deutschen Gesellschaft für Radiokardiologie
- Deutschen Physikalischen Gesellschaft
- Deutschen Röntgengesellschaft
- Fachverbandes für Strahlenschutz
- Gesellschaft für Biologische Strahlenforschung
- Vereinigung Deutscher Strahlenschutzärzte
- Gesellschaft Deutscher Chemiker, Fachgruppe Nuklearchemie

Die meisten dieser Gesellschaften, so auch der FS, haben sich schon im Jahre 1988 auf dem Gebiet der Strahlenforschung zusammengeschlossen, um die Strahlenforschung zu fördern sowie ihre Aktivitäten auf diesem Gebiet zusammenzuführen und damit effektiver zu gestalten. Andere kamen später hinzu.

Der GAST ist zugleich ihre und somit der deutschen Strahlenforscher einzige Vertretung in der Internationalen Association for Radiation Research (IARR) sowie anderen internationalen interdisziplinären Gremien auf dem Gebiet der Strahlenforschung.

Derzeitiger Vorsitzender des GAST ist Prof. Dr. H. Jung, Institut für Biophysik und Strahlenbiologie, Universitätskranenhaus Eppendorf, Hamburg, sein Stellvertreter Prof. Dr. Chr. Reiners, Klinik und Polyclinik für Nuklearmedizin der Universitätskliniken Würzburg.

6. **FS und IRPA - eine enge Beziehung**

(Rupprecht Maushart)

Die Rolle des Fachverbands in der frühen Geschichte der IRPA

Courvoisier war damals der Präsident, Rupprecht Maushart der Generalsekretär. Wie man schon am Namen der Gesellschaft erkennen kann, wollten wir von Anfang an einen internationalen Kern bilden. Heute wissen wir, dass dies damals unmöglich funktionieren konnte, aber dieser Irrtum ist eine andere Geschichte, die nicht hierher gehört.

Abschließend könnte man sagen, dass die Offenheit, die bei Gründung der IRPA herrschte und die von P. Courvoisier und R. Maushart zusammen mit vielen anderen geschätzten Kollegen weitergetragen worden war, den Fachverband für Strahlenschutz nach 30-jährigem Bestehen immer noch leitet.
7. Die Arbeit der Vereinigung für Strahlenforschung und Strahlenschutz (W.-D. Kraus, B. Dörschel)

Zur wissenschaftlichen Information und Weiterbildung der Mitglieder wurden in Abständen von zwei Jahren wissenschaftliche Tagungen durchgeführt. Im Oktober 1978 fand das erste wissenschaftliche Kolloquium statt. Diese Veranstaltungen wurden mit ca. 2 bis 3 pro Jahr seither regelmäßig weitergeführt.

Bereits im Zeitraum 1977 – 1979 traten Probleme mit den zuständigen staatlichen Stellen auf, in deren Folge die internationale Zusammenarbeit mit der IRPA stark eingeschränkt werden musste. Weiterhin machte sich die Limitierung der Mitgliederzahl störend bemerkbar, da ein großes Interesse unter Wissen-

<table>
<thead>
<tr>
<th>Name</th>
<th>Funktion</th>
<th>Zeitraum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Herbert Jacobs</td>
<td>Mitglied</td>
<td>1977 - 1984</td>
</tr>
<tr>
<td>Dr. Rupprecht Maushart</td>
<td>Mitglied</td>
<td>1988 - 1990</td>
</tr>
<tr>
<td>Dr. Peter Courvoisier</td>
<td>Schatzmeister</td>
<td>1966 - 1984</td>
</tr>
<tr>
<td>Dr. Werner Hunzinger</td>
<td>Schatzmeister</td>
<td>1984 - 1989</td>
</tr>
<tr>
<td>Dr. Rupprecht Maushart</td>
<td>Schatzmeister</td>
<td>1990 -</td>
</tr>
<tr>
<td>Dr. Herbert Jacobs</td>
<td>Vizepräsident</td>
<td>1984 - 1988</td>
</tr>
<tr>
<td>Prof. Dr. Alexander Kaul</td>
<td>Vizepräsident für Kongreß-Angelegenheiten</td>
<td>1980 - 1984</td>
</tr>
<tr>
<td>FS-Sievert Preisträger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Wolfgang Jacobi</td>
<td>IRPA-7, Sydney</td>
<td>1988</td>
</tr>
<tr>
<td>IRPA – Internationaler Kongreß organisiert vom FS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRPA-6 Berlin 1984</td>
<td>Kongreß-Präsident</td>
<td>Alexander Kaul</td>
</tr>
<tr>
<td>IRPA – Internationale Kongresse mit FS-Beteiligung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRPA-1 Rom 1986</td>
<td>Mitherausgeber der Proceedings</td>
<td>Rupprecht Maushart</td>
</tr>
<tr>
<td>IRPA-7 Sydney 1988</td>
<td>Vorsitzender Programm-Ausschuss</td>
<td>Hans Brunner</td>
</tr>
<tr>
<td>IRPA-9 Vienna 1996</td>
<td>Vorsitzender Programm-Ausschuss</td>
<td>Herwig Paretzke</td>
</tr>
<tr>
<td>IRPA – Regional Kongresse mit FS-Beteiligung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th IRPA Regional Congress</td>
<td>Amsterdam</td>
<td>Mai 1975</td>
</tr>
<tr>
<td>13th IRPA Regional Congress</td>
<td>Salzburg</td>
<td>September 1986</td>
</tr>
<tr>
<td>15th IRPA Regional Congress</td>
<td>Visby</td>
<td>September 1989</td>
</tr>
<tr>
<td>16th IRPA Regional Congress</td>
<td>Paris</td>
<td>Dezember 1990</td>
</tr>
<tr>
<td></td>
<td>Budapest</td>
<td></td>
</tr>
</tbody>
</table>
schaftlern und Praktikern bestand, das z. T. über den Strahlenschutz hinausging und auch Grundlagenwissenschaften einschloss.

Aus diesen Gründen entstand der Vorschlag, eine Vereinigung für Strahlenforschung und Strahlenschutz (VSS) zu gründen, in die alle Mitglieder der GfS übernommen werden und deren Statut sich von dem der GfS in folgenden Punkten unterschied:

- Das wissenschaftliche Interessengebiet wird auf Probleme der Strahlenforschung erweitert.
- Die Vereinigung ist nicht Mitglied der IRPA.
- Innerhalb der VSS können Sektionen und Arbeitsgemeinschaften gegründet werden.

Die VSS nahm 1980 ihre Arbeit rechtskräftig auf und verstand sich als Nachfolgeorganisation der GfS, die Ende 1982 aufgelöst wurde. In diesem Sinne wurden alle wissenschaftlichen Veranstaltungen, d. h. insbesondere die Tageskolloquien und die zweijährlichen Tagungen, kontinuierlich weitergeführt.

Im Zuge der deutschen Einheit ist bis spätestens Ende 1991 ein Zusammenschluss beider Verbände beabsichtigt.
8. StrahlenschutzPRAXIS - die Zeitschrift des Fachverbands (R. Maushart)

Die Aufgabe der Zeitschrift: Profil und Stimme des Fachverbands

Das Markenzeichen der Zeitschrift: Das Schwerpunktthema

Folgende Schwerpunktthemen sind bisher behandelt worden oder werden in 1998 behandelt:

Heft 1/95 Nuklearkriminalität, - eine Bedrohung? Handel mit Kernsprengestoffen in Europa
Heft 2/95 Nichtionisierende Strahlung, - Konzepte und Praxis des Strahlenschutzes
Heft 3/95 Radioaktive Altlasten, - das Erbe des Atomzeitalters?
Heft 4/95 Strahlenschutz in der Medizin: Eine ständige Herausforderung

Heft 1/96 Die Folgen von Tschernobyl: Was wissen wir 10 Jahre danach?
Heft 2/96 Berufliche Strahlenexposition heute: Messung, Ergebnisse, Trends
Heft 3/96 Natürliche Strahlenquellen: Im Strahlenschutz genügend berücksichtigt?
Heft 4/96 Umgebungs- und Umweltüberwachung heute: Bilanz aus 40 Jahren Erfahrung

Heft 1/97 Notfallschutz in Europa: Einheit oder Vielfalt?
Heft 2/97 Strahlenschutz und Mikrosieverts: Müssen wir umdenken?
Heft 3/97 Entsorgung, - das Reithema des Atomzeitalters?
Heft 4/97 Strahlenschutz in Europa: Wie einig sind wir?

Heft 1/98 Strahlenschutz als Beruf: Bilanz und Zukunft
Heft 2/98 EDV im Strahlenschutz: Fortschritt wohin?
Heft 3/98 Meßtechnik für nichtionisierende Strahlung: Alle Probleme gelöst?
Heft 4/98 Sicherer Umgang mit Strahlenquellen: Erfahrungen aus 40 Jahren Strahlenschutz

Heft 1/99 Radioaktive Stoffe
Heft 2/99 Kontaminationen
Heft 3/99 Spurenanalyse
Heft 4/99 Strahlenschutzregelungen

Heft 1/00 Zukunft des Strahlenschutzes
Heft 2/00 Novellierung der Strahlenschutzverordnung
Heft 3/00 Strahlenschutz des Personals in der Medizin
Heft 4/00 Stilllegung von Kernkraftwerken
Das Ziel: Eine weitere Verbreitung der Zeitschrift

Der komplette Inhalt der ersten 5 Jahrgänge ist auf CD erhältlich.
9. Die Arbeitskreise des Fachverbandes

9.1 Arbeitskreis „Ausbildung“ (AKA) (Hans Gerrit Vogt)

Der AKA nimmt unter den FS-Arbeitskreisen insofern eine Sonderstellung ein, als hier kein spezielles Thema in seiner inhaltlichen Vielfalt sondern im Prinzip alle praxisrelevanten Strahlenschutzthemen unter dem Gesichtspunkt der Aus- und Weiterbildung zur Diskussion stehen.

Um die Motivation und damit den Erfolg von Teilnehmern an Strahlenschutzkursen zu fördern, besteht ein wesentliches Anliegen des AKA darin, wiederholt zu prüfen, was bei solchen Veranstaltungen tatsächlich an Fachwissen und Fähigkeiten vermittelt werden muß, was tatsächlich zu Hintergrundinformation geboten werden sollte und wie eine effektive Unterrichtsgestaltung aussehen könnte. Die im AKA von den Vertretern der Kursveranstalter, Aufsichtsbehörden und Kursteilnehmer geführte Diskussion ist dabei insbesondere durch den Zwang zur Kostenminimierung und den Wunsch nach praxisnahem Unterricht geprägt - unter dem Leitgedanken, daß nur eine Ausbildung die Anwendung ionisierender Strahlung möglich und vertretbar macht.

Zur Unterstützung von Strahlenschutzverantwortlichen und -beauftragten hat der AKA ferner in mehreren Arbeitsgruppen Muster für Strahlenschutzanweisungen für die verschiedensten Tätigkeiten im Geltungsbereich von StrlSchV und RöV entwickelt. Inzwischen sind 3 Heftchen entstanden, in denen
Beispiele für Strahlenschutzanweisungen sowohl für technische als auch für medizinische Anwendungen zu finden sind.

Im Internet findet man Aktuelles aus dem AKA unter:
http://sun1.rzrn.uni-hannover.de/~nhvfgv/fisindex.html

AKA: 62 Mitglieder, 3 Arbeitsgruppen, 12 Veröffentlichungen.
Mitarbeiter am Zentrum für Strahlenschutz und Radioökologie der Universität Hannover
Obmann des NMP 734 „Abschirmungen“ im DIN
Vertreter: Dieter Christ, Staatliches Amt für Arbeitsschutz, Wuppertal

9.2 Arbeitskreis (AKB) Beförderung (Ingrid Weitzenfelder)

Um eine größere Effektivität und auch Mitglieder außerhalb des Bereiches Entsorgung zu gewinnen, wurde im Herbst 1997 erneut die Gründung eines AK „Beförderung, beantragt. Selbstens Beförderungsunternehmen, Nuklearindustrie und Behörden hatten sich zu diesem Thema mehr als 30 Interessenten gemeldet.

In der Direktoriumssitzung vom Dezember 1998 wurde der Beschluss gefasst, aus dieser Task Group einen neuen Arbeitskreis „Beförderung, (AKB) zu gründen.
Schwerpunkte und Arbeitsergebnisse:
Aufgrund der mit Stand Dezember 1996 vorliegenden überarbeiteten Fassung der Empfehlungen der IAEA für die sichere Beförderung radioaktiver Stoffe, die 2001 in die Gefahrgutvorschriften der verschiedenen Verkehrsträger umgesetzt wird, sind z.Zt. die dabei auftretenden Strahlenschutzprobleme relevant.
Ein Schwerpunkt der Arbeiten für das laufende Jahr ist daher im Vorfeld der Umsetzung der IAEA-Empfehlungen von 1996 die Ausarbeitung von Beispielen für die künftig geforderten „Strahlenschutzprogramme“.
Gleichzeitig sind Änderungsvorschläge für den neuen Revisionsprozeß der IAEA-Empfehlungen, der ab Mitte 2000 beginnt, auszuarbeiten. Da die IAEA beschlossen hat, ihren Revisionszyklus drastisch zu verkürzen, besteht grundsätzlich die Möglichkeit, stärker als bisher Einfluss auf die internationalen Regelungen nehmen zu können.

Zu dieser Empfehlung ist eine Foliensammlung geplant, die z.Zt. im Entwurf vorliegt und ab Mai 2000 zur Verfügung stehen wird.

Sekretär des Arbeitskreises

9.3 Arbeitskreis „Dosismessung externer Strahlung“ (AKD) (Ronald Neuhaus)

Aktuell anstehende Fragen der Strahlenschutzmeßtechnik bestimmen hierbei die Vielfalt der interessierenden Themen. Hierzu zählen:

• die Information und der Erfahrungsaustausch über Neuentwicklung, Erprobung und Anwendung von Geräten und Meßmethoden
Diskussion und Stellungnahme zu Entwürfen und Veröffentlichungen von nationalen und internationalen Gremien, Richtlinienanforderungen, DIN-Normen, Empfehlungen der IEC, ISO, ICRU und ICRP.

Die Erfordernisse für eine Strahlenschutzüberwachung werden zwar durch Verordnungen und Richtlinien geregelt; diese ermöglichen jedoch nicht automatisch die stetige Anpassung der Strahlenschutzmeßtechnik an den Stand der Technik. Auswahl und Einsatz von Strahlenschutzmeßverfahren sind daher für den Anwender von besonderem Interesse. Zum Themenkatalog zählen u. a:

- Vergleichsmessungen,
- Anforderungen an Geräte,
- Eignungstest,
- Kalibriervorschriften,
- Messung des natürlichen Strahlenpegels,
- Photonenstrahlungsfelder bis 10 MeV,
- Beta-/Gammadosimetrie,
- Neutronenmeßverfahren,
- gemischte Strahlungsfelder.

Eine wichtige Aufgabe sieht der AKD in der Vorstellung und Diskussion von Entwicklungsarbeiten schon im frühen Stadium vor einer Veröffentlichung, die für alle Beteiligten zu vielseitigen Anregungen, Verbesserungen, aber auch zu einer fruchtbaren Koordinierung der Arbeiten führen. Beispielhaft sei hier angeführt die aktuelle Diskussion zum Stand der Technik, die Berichterstattung über Tagungen, die Vorstellung von Industrieeentwicklungen, von Meß- und Kalibrierverfahren, die Problematik der Beta- und Photonenmessung für Strahlung geringer Eindringtiefe.

Im Auftrag des BMU wurde im AKD der Entwurf einer Richtlinie für die physikalische Strahlenschutzkontrolle bei externer Strahlung erarbeitet.

Das nach wie vor große Interesse der Mitglieder an den AKD-Sitzungen, das sich in einer mittleren Teilnehmerzahl von 30 zeigt, ist zweifellos der Erfahrungsaustausch, der zwanglos offen und kritikfreudig verläuft und der mit großer Intensität und Fachkompetenz gepflegt wird. Er bietet allen Beteiligten vielseitige Anregungen, insbesondere den Vertretern der Fachgremien eine Verbesserung der
Arbeitsgrundlagen und den Geräteherstellern und Anwendern neue Impulse zur Verbesserung der Strahlenschutzüberwachung.

Mit der ersten Sitzung mit dem neuen Sekretär im Oktober 1997 wurde eine neue Struktur der AKD-Sitzungen beschlossen: Die Sitzung gliedert sich dabei in ein Schwerpunktthema, Themen des Erfahrungsaustausches der Mitglieder bzw. Themen zur allgemeinen Weiterbildung und aktuelle Vorträge zur wissenschaftlichen und technischen Weiterentwicklung der Dosimetrie externer Strahlung.

Sekretär des Arbeitskreises
Dr. Ronald Neuhaus
Siemens AG ZT UTS 1
ZT UTS 3
D-81730 München
Tel. ++49-89-636 47168
Fax ++49-89-636 40162
E-Mail: Ronald.Neuhaus@mchp.Siemens.de

9.4 Arbeitskreis "Entsorgung" (AKE) (Gerd Georg Eigenwillig)

Bei der Handhabung radioaktiver Stoffe in Forschung, Medizin, Industrie und Energiewirtschaft fallen radioaktive Reststoffe an. Werden die Reststoffe nicht wiederverwertet, so müssen sie als radioaktive Abfälle geordnet beseitigt werden.

Weitere Arbeitsthemen waren und sind z. B.

- die Freigabe von Materialien, Gebäuden und Bodenflächen aus anzeige- und genehmigungspflichtigem Umgang,
- das zunehmende Aufkommen von kontaminierten Schrotten und die Funde von Strahlern im Zuge der Internationalisierung im Bereich der Recyclingindustrie,
- die Novellierung der deutschen Strahlenschutzverordnung auf der Basis der EURATOM-Richtlinie 96/29/Euratom und
- eine mögliche Weiterentwicklung der bestehenden Strahlenschutzkriterien auf der Basis der von R.H. Clarke ausgelösten Diskussion zur Controllable Dose.

Sekretär des Arbeitskreises:

Stellvertreterin des Sekretärs:

Anschrift des Sekretärs:

Dr. Gerd G. Eigenwillig
Siemens AG, KWU NDM3
Postfach 10 10 63, D-63010 Offenbach am Main
Tel.: ++49-69-807 3668
Fax: ++49-69-807 4022
E-Mail (Sekretariat):
Gerd.Eigenwillig@off1.siemens.de

Anschrift der Stellvertreterin

Ursula Kastl
Roche Diagnostic GmbH, OS-OU
Nonnenwald 2, D-82377 Penzberg
Tel.: ++49-8856-60 2263
Fax: ++49-8856-60 3109
E-Mail: Ursula.Kastl@Roche.com
9.5 Arbeitskreis "Inkorporationsüberwachung" (AKI) (Klaus Henrichs)

Inkorporation bedeutet hier die Aufnahme radioaktiver Stoffe in den Körper; ihre Überwachung ist erforderlich zur Dosimetrie beim Umgang mit offenen radioaktiven Stoffen.

Mit dieser Problematik ist eine breite Vielfalt von Fragestellungen verbunden:
- Beurteilung von Inkorporationsrisiken am Arbeitsplatz,
- Festlegung geeigneter Überwachungsprogramme (z.B. Festlegung von Häufigkeiten),
- Auswahl von Überwachungsverfahren (z.B. Raumluftüberwachung) und Meßmethoden,
- Interpretation gemessener Ergebnisse zur Dosisermittlung.

Sekretär des Arbeitskreises

9.6 Arbeitskreis „Nachweisgrenzen“ (AKSIGMA) (Klaus Kirchhoff)

Im Arbeitskreis SIGMA arbeiten 18 Fachleute zusammen von Universitäts-Instituten (Universität Hannover [ZSR, LMS]), Forschungsinstituten (Forschungszentrum Karlsruhe und Jülich), Bundes- und Staatsbehörden (Physikalisch-Technische Bundesanstalt [PTB]), Bundesamt für Strahlenschutz [BfS, KTA], Bundesamt für Gewässerkunde [BfG], Bayerisches Landesamt für Umweltschutz, Niedersächsisches Landesamt für Ökologie [NLÖ], Nordrhein-Westfälisches Landesamt für Arbeitsschutz [LaFA] und verschiedenen Herstellern und Verkaufsorganisationen von Strahlenschutzmessgeräten. Überlicherweise tagt die Arbeitsgruppe viermal jährlich an zwei Tagen.

Tabelle 1 gibt einen Überblick über den derzeitigen Stand der Normungsarbeiten. Bis heute sind sieben Teile, teilweise mit Beiblättern zur Erläuterung ihrer Anwendung, fertiggestellt. Vier weitere Teile sind derzeit in Arbeit bzw. stehen kurz vor dem Abschluß.

<table>
<thead>
<tr>
<th>DIN 25482</th>
<th>Nachweisgrenze und Erkennungsgrenze bei Kernstrahlungsmessungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teil 1</td>
<td>Zählende Messungen ohne Berücksichtigung des Probenbehandlungseinzelflusses</td>
</tr>
<tr>
<td>mit Beiblatt</td>
<td></td>
</tr>
<tr>
<td>Teil 2</td>
<td>Zählende spektrometrische Messungen ohne Berücksichtigung des Probenbehandlungseinzelflusses</td>
</tr>
<tr>
<td>mit Beiblatt</td>
<td></td>
</tr>
<tr>
<td>Teil 3</td>
<td>Messungen mit linearen, analog arbeitenden Ratemetern</td>
</tr>
<tr>
<td>Teil 4</td>
<td>Zählende alphaspектrometrische Messungen ohne Berücksichtigung von Probenbehandlungs- und Geräteeinflüssen</td>
</tr>
<tr>
<td>Teil 5</td>
<td>Zählende hochauflösende gammaspектrometrische Messungen ohne Berücksichtigung des Probenbehandlungseinzelflusses</td>
</tr>
<tr>
<td>mit Beiblatt</td>
<td></td>
</tr>
<tr>
<td>Teil 6</td>
<td>Zählende Messungen mit Berücksichtigung des Probenbehandlungs- und Geräteeinflüssen</td>
</tr>
<tr>
<td>mit Beiblatt</td>
<td></td>
</tr>
<tr>
<td>Teil 7</td>
<td>Zählende Messungen an Filtern während der Anreicherung radioaktiver Stoffe</td>
</tr>
<tr>
<td>Teil 10</td>
<td>Allgemeine Anwendungen (Weiβdruck im Druck)</td>
</tr>
<tr>
<td>Teil 11</td>
<td>Messungen mit Albedo-Dosimetern (Gelbdruck im Druck)</td>
</tr>
<tr>
<td>Teil 12</td>
<td>Entfaltung von Spektren (Gelbdruck)</td>
</tr>
<tr>
<td>Teil 13</td>
<td>Zählende Messungen an bewegten Objekten</td>
</tr>
</tbody>
</table>

men übertrugen inzwischen die Inhalte der DIN-Normen in Computerprogramme, die sie den kom-
merziellen Softwarepaketen ihrer Systeme als Auswertehilfen beifügten.

Sekretär des Arbeitskreises

1981 - 1983 Prof. Dr. Heinrich Schultz, Physiker, Universität Hannover, Leiter der Gruppe Strahlenschutz.

Seit 1983 Prof. Dr. Klaus Kirchhoff, Physiker, Universität Hannover, Fachbereich Physik, Stellvertreter ist Prof. Dr. Rolf Michel, Zentrum für Strahlenschutz und Radioökologie, Universität Hannover.

9.7 Arbeitskreis "Nichtionisierende Strahlung" (AKNIR) (Norbert Krause)

Vor ca. 20 Jahren gründete der Fachverband für Strahlenschutz den Arbeitskreis "Nichtionisierende Strahlung" (AKNIR), weil neben der ionisierenden Strahlung die Diskussion um die nichtionisierende Strahlung immer mehr an Bedeutung gewann. Die zunehmende Beunruhigung der Öffentlichkeit vor den Einwirkungen nichtionisierender Strahlung durch statische elektrische oder magnetische Felder, durch elektromagnetische Felder, durch Ultraviolett- oder Laserstrahlung hat unter Stichworten wie "Elektrosmog" und anderen zu einem starken Interesse an Informationen und Schutzmaßnahmen geführt.

Zu den täglichen Problemen mit möglichen Expositionen durch nichtionisierende Strahlung kommt die rapide Entwicklung der Technik hinzu, so dass dieses Thema auch im Bereich des Arbeitsschutzes erheblich an Bedeutung gewinnt. Da alle Bevölkerungsgruppen nichtionisierenden Strahlen ausgesetzt sind, ist hier eine Aufgabe für den Gesundheitsschutz und die sichere Gestaltung der Technik entstanden, die der AKNIR wahrnimmt.

Eines der Hauptziele der Arbeit des Arbeitskreises "Nichtionisierende Strahlung" ist es, Unterlagen in Form von Leitfäden zu schaffen, um die notwendigen Informationen zur Physik, Biologie und Medizin sowie zu den Auswirkungen dieser Strahlungsart zu geben. Diese Leitfäden geben sowohl den im Arbeitsschutz tätigen Experten aber auch jedermann die notwendige Hilfestellung, um sich in diesem Thema zu informieren, evtl. die notwendigen Maßnahmen zu ergreifen, aber auch die mitunter von den Medien geschürten Ängste in der Öffentlichkeit vor nichtionisierender Strahlung durch sachliche Information zu relativieren.

Teilt man den Frequenzbereich elektromagnetischer Strahlung in Hinblick auf mögliche biologische Wirkung auf, so ergeben sich die beiden Hauptbereiche ionisierende und nichtionisierende Strahlung.

Die Strahlenquanten der nichtionisierenden Strahlung (Tabelle) haben demgegenüber so wenig Energie, dass biologische Wirkungen im allgemeinen davon abhängen, wie viele Strahlenquanten gleichzeitig an einer Stelle wirksam werden können.

Man kann Schwellenwerte der Bestrahlungsstärke angeben, unterhalb derer keine schädigenden biologischen Wirkungen auftreten; unterhalb dieser Schwellenwerte bietet eine Verkleinerung keine zusätzliche Sicherheit mehr. Die Festlegung von Grenzwerten richtet sich nach der Genauigkeit der Kenntnisse der Schwellenwerte und der Schwankungsbreite der individuellen Empfindlichkeit.

Zwar war nichtionisierende Strahlung schon immer ein Bestandteil der natürlichen Umwelt des Menschen, doch ist durch die technische Entwicklung der Strahlenpegel um ein Vielfaches heraufgesetzt.

Tabelle: Spektrum nichtionisierende Strahlung

<table>
<thead>
<tr>
<th>Strahlungstyp</th>
<th>Frequenzbereiche</th>
<th>Wellenlängenbereiche</th>
</tr>
</thead>
<tbody>
<tr>
<td>optische Strahlung</td>
<td>3000 THz - 300 GHz</td>
<td>100 mm - 1 mm</td>
</tr>
<tr>
<td>Hochfrequenz-Strahlung</td>
<td>300 GHz - 30 kHz</td>
<td>1 mm - 10 km</td>
</tr>
<tr>
<td>Niederfrequenz-Strahlung</td>
<td>30 kHz - 3 Hz</td>
<td>10 km - 10⁶ km</td>
</tr>
<tr>
<td>statische Felder</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ultraschall</td>
<td>> 10 kHz</td>
<td>< 20 mm</td>
</tr>
<tr>
<td>Infraschall</td>
<td>> 16 Hz</td>
<td>> 20 m</td>
</tr>
</tbody>
</table>

Die Wechselwirkungsmechanismen der nichtionisierenden Strahlung mit den Organismen hängen stark vom Frequenz- bzw. Wellenlängenbereich ab, so dass Extrapolationen von einem Frequenzbereich in einen anderen meistens unzulässig sind.

In vielen Fällen sind jedoch die Wirkungsmechanismen nicht bekannt, und da biologische Modelle fehlen, bleibt trotz des Einhaltens von "sicheren" Grenzwerten in vielen Fällen bei den Betroffenen Unbehagen.

Der AKNIR hat im Jahre 1997 zwei Fortbildungsveranstaltungen durchgeführt, nämlich:

- Weiterbildungsveranstaltung „Aktuelle Entwicklungen auf dem Gebiet Nichtkohärente optische Strahlung“, 12. - 14.02.1997 in Tabarz,

Alle Beiträge der Veranstaltung sind in der Publikationsreihe „Fortschritte im Strahlenschutz“ im Verlag TÜV Rheinland in zwei Tagungsbänden veröffentlicht. Diese können über den Fachverband für Strahlenschutz e.V. oder die Berufsgenossenschaft für Feinmechanik und Elektrotechnik, Köln, erworben werden.

Sekretär des Arbeitskreises

9.8 Arbeitskreis "Notfallschutz" (AKN) (Anton Bayer)

Neben diesen Sitzungen hat der Arbeitskreis inzwischen drei öffentliche Seminare durchgeführt:

- „Stand des Notfallschutzes in Deutschland und der Schweiz“
 Bericht Nr FS-94-74-T (1994)
 Hrsg.: M. Baggenstos, A. Bayer

- „Information von Behörden, Medien und Bevölkerung“
 München, 08. - 10. Oktober 1997
 Bericht Nr. FS-97-86-T (1997)
 Hrsg.: A. Bayer, M. Baggenstos

- „Grenzüberschreitender Notfallschutz“
 (gemeinsam mit dem französischen Strahlenschutzverband SFRP)
 Zürich, 3. - 5. März 1999
Die Berichte können im Buchhandel oder direkt beim Verlag TÜV-Rheinland, Köln, bezogen werden.

Derzeitiger Sekretär des AKN: Prof. Dr. A. Bayer
Derzeitiger stellv. Sekretär des AKN: Dr. D. Rauber

Prof. Dr. Anton Bayer
Bundesamt für Strahlenschutz
Institut für Strahlenhygiene
Ingolstädter Landstr. 1
D-85764 Oberschleißheim

Dr. Dominique Rauber
Nationale Alarmzentrale (NAZ)
Ackermannstraße 26, Postfach
CH-8044 Zürich
Tel.: +41-1-256-9487
Fax: +41-1-256-9497
E-Mail: ra@naz.ch

9.9 Arbeitskreis „Praktischer Strahlenschutz“ (AKP) (Barbara Stolze)

Gründung

Die in Berlin entwickelten Ideen und Gedanken zur thematischen Neuorientierung, bei der weiterhin berücksichtigten Bearbeitung der Kontaminations-Dekontaminationsproblematik, - sie gehört in diesem Bereich des praktischen Strahlenschutzes - wurden beraten, weitere Ideen und konzeptionelle Vorschläge der Arbeitskreismitglieder erörtert. Wir fassten mit großer Mehrheit den Beschluss, künftig die Bezeichnung "Arbeitskreis praktischer Strahlenschutz" (AKP) zu führen.

Zielsetzung

Bereits in der Gründungsversammlung des AKK war das Motto "aus der Praxis - für die Praxis" genannt worden. Es trifft für den AKP in noch breiternem Umfang zu, wird noch erweitert durch die im praktischen Strahlenschutz notwendige Umsetzung gesetzlicher und behördlicher Regelungen mit sinnvollen, relevanten Lösungsmöglichkeiten am Arbeitsplatz. Alle Mitgliedern des Arbeitskreises war bewußt, dass der Anspruch und Umfang der künftigen Arbeit begrenzt bleiben wird, ressourcenbeschränkt sind, das Schutzziel zu verwirklichen, Hilfestellung zur Minimierung von Strahlenexpositionen durch Vorschläge zur unmittelbaren praktischen Umsetzung geben zu können, nicht immer erfüllbar sein wird.

Die Mitarbeit einiger Arbeitskreismitglieder in DIN-Ausschüssen gibt die unmittelbare Möglichkeit, Normung unter dem kritischen Gesichtspunkt der praktischen Notwendigkeit zu beeinflussen. Auch für die praxisrelevante Ausbildung von Strahlenschutzbeauftragten und Personengruppen mit notwendigen Spezialkenntnissen, wie z.B. auf dem Gebiet der Dekontamination, kann die Übermittlung häufig auftretender Anfragen zu bestimmten Strahlenschutzproblemen an den Arbeitskreis Ausbildung von Bedeutung sein. Ähnliche Aspekte gelten auch für die Zusammenarbeit mit weiteren Ar-

chro2000.doc
beitskreisen. Der Arbeitskreis möchte auch aus den an ihn herangetragenen Problemen und deren Lösungen entsprechende Beiträge für die Zeitschrift Strahlenschutzpraxis zur Verfügung stellen.

Um die Arbeit inhaltlich und zeitlich überschaubar zu gestalten, werden jeweils zu neu zu bearbeitenden Themen temporäre Arbeitsgruppen gebildet.

Erwartungen

Anschrift des Sekretärs
Frau Dr. Barbara Stolze
Landesanstalt für Personendosimetrie und Strahlenschutzausbildung
Waldowallee 115, D-10318 Berlin
Tel.: ++49-30-5001-3428
FAX: ++49-30-5001-3440
E-Mail: Stolze@lps-berlin.de

9.10 Arbeitskreis "Rechtsfragen" (AKR) (Thomas Philipp)

Geschichte des Arbeitskreises
Eine mehr beiläufige Bemerkung bei der Fachverbandstagung in Reinheitsbrunn im November 1991, der FS möge rechtzeitig zur Novellierung der Strahlenschutzgrundnormen der Europäischen Gemeinschaften aufgrund der ICRP-Empfehlung Nr. 60 und zu der darauf folgenden Anpassung des deutschen Strahlenschutzrechts Stellungnahmen vorbereiten, hat das Direktorium des Fachverbands auf Vorschlag des damaligen Präsidenten Jürgen Narrog veranlaßt, einen besonderen Arbeitskreis für Rechtsfragen ins Leben zu rufen und Herrn Dr. Werner Bischof als vorläufigen Sekretär zu bitten, seine Gründung in die Wege zu leiten.

zu ihrem Stellvertreter wurde Herr Dipl.-Kristallograph Thomas Philipp gewählt. Aufgrund dienstlicher Verpflichtungen von Frau Sonnek ruht das Amt der Sekretärin seit September 1999, die Aufgaben werden bis zur Wahl eines neuen Sekretärs vom Stellvertreter wahrgenommen. Der AKR hat derzeit 22 Mitarbeiter, die bei ihrer beruflichen Tätigkeit laufend mit Fragen des Strahlenschutzes befasst sind.

Arbeitsergebnisse und Schwerpunkte des Arbeitskreises

Sekretäre des Arbeitskreises

9.11 Arbeitskreis „Strahlenwirkung - Strahlenbiologie“ (AKS) (Günter Heinemann)

Strahlenexposition durch ionisierende Strahlung erfolgt heute für die meisten exponierten Personen im Bereich niedriger Dosen. Alle Annahmen über die biologische Wirkung der Strahlung im diesem Dosisbereich sind hergeleitet worden von der Erkenntnis der Wirkung hoher Dosen, die bei den Atombombenexplosionen, therapeutischen Anwendungen in der Medizin und Unfällen in der Industrie und Forschung aufgetreten sind.

Der Fachverband für Strahlenschutz gründete deshalb 1991 eine Arbeitskreis „Strahlenwirkung/Strahlenbiologie“. Der Arbeitskreis hat sich zur Aufgabe gestellt:

• wissenschaftliche Information über den Wirkungsmechanismus kleiner Dosen zu sammeln
• wissenschaftliche Publikationen zu diesem Problem zu diskutieren
• den Kontakt zu anderen wissenschaftlichen Vereinigungen, die auf diesem Gebiet tätig sind, aufrechtzuerhalten (GAST, Strahlenbiologische Forschungseinrichtungen)
• Strahlenschutzfachleute anläßlich von Tagungen durch Veröffentlichungen und Diskussionen zu informieren
• Informationen für die Öffentlichkeit bereitzustellen.

- Die Mitglieder des Arbeitskreises erhalten die Möglichkeit strahlenbiologische Forschungsmethoden im Labor zu sehen
- Über die Mitarbeiter des Instituts können aktuelle Forschungsarbeiten vorgetragen werden und im Hinblick auf ihre Bedeutung für den Strahlenschutz diskutiert werden.

In dieser Form fand die 16. Sitzung in Gießen am Strahlenzentrum der Universität bei Prof. Kiefer statt. Repairmechanismen der Zelle, zytogenetische und molekularbiologische Techniken (FISH u. PCR) waren die zentralen Themen des biologischen Teils der Sitzung. Der epidemiologisch ausgerichtete Teil der Sitzung befaßte sich mit einem mathematischen Modell (FLECK u. Mitarbeiter, Atom-Institut der Österreichischen Universitäten), das zellbiologische und molekularbiologische Vorstellungen in Risikoberechnungen integriert. Es zeigte sich, dass die Beteiligung mehrerer kompetenter Strahlenbiologen die Diskussion auf eine fachlich interessante kontroverse Ebene brachte.

Weitere Sitzungen an strahlenbiologischen Instituten fanden im Februar 1998 in Tübingen (Prof. Rodemann), im Febr. 1999 in München (Dr. Paretzke u. Prof. Bauchinger), September 1999 in Hamburg (Prof. Jung) und im Jan. 2000 in Darmstadt (Prof. Kraft GSI) statt.

Sekretäre des Arbeitskreises

9.12 Arbeitskreis "Umweltüberwachung" (AKU) (Alfred Neu)

Die Anzahl der AKU-Mitglieder war, besonders nach Tschernobyl, angewachsen und stagniert seit mehreren Jahren bei etwa 60 Personen. Die Gewinnung jüngerer Mitglieder nach altersbedingtem Ausscheiden anderer gestaltet sich angesichts von Personaleinsparungsmaßnahmen bei Firmen...

- Kommunikation bei Störfällen
- Novellierung der Strahlenschutzverordnung in Bezug auf die (bisherigen) §§ 44, 45 und 46
- Welche künstlichen Radionuklide werden im Rahmen der Umgebungüberwachungsprogramme nachgewiesen? Erarbeitung einer Zusammenstellung für die kerntechnischen Anlagen in Deutschland und in der Schweiz
- Erarbeitung eines Kompendiums über Gegenstände, bei denen früher radioaktive Stoffe verwendet wurden
- Qualitätssicherung/Qualitätskontrolle/Zertifizierung von Radioaktivitätsmesslabors
- Bestimmung und Berichterstattung von Nachweisgrenzen, Messwerten und Messunsicherheiten bei der Überwachung der Gamma-Ortsdosis mit Festkörperdosimetern (Umgebungsdosimetrie)

Angedacht sind Arbeitsgruppen, die sich mit der Entlassung von Abfällen und Reststoffen aus dem Atomrecht und den internationalen Bestrebungen zur Normung von Radioaktivitätsmessverfahren befassen sollen.

9.13 Arbeitskreis „Uranbergbau und radioaktive Abfälle“ (AKURA) (Eckhard Ettenhuber)

Mit der deutschen Einheit ergab sich für die Bundesrepublik ein Strahlen- und Umweltschutzproblem von besonderer Bedeutung: In Sachsen und Thüringen existierten neben noch aktiven Uranerzbergbau- und -aufbereitungsbetrieben, aus denen radioaktive Stoffe in die Umwelt freigesetzt wurden, zahlreiche Hinterlassenschaften des früheren Uranerzbergbaus und des Altbergbaus. Die Auswirkungen des Bergbaus und seiner Hinterlassenschaften auf die Umwelt und die Strahlenexposition der in den Bergbaugebieten lebenden Bevölkerung waren meist unbekannt, sie mußten so schnell wie möglich aufgeklärt und, wenn notwendig, beseitigt werden.

In den letzten Jahren ist die Aufmerksamkeit der Strahlenschutzfachleute in zunehmendem Maße auf Strahlenschutzprobleme gerichtet, die durch radioaktiv kontaminierte Hinterlassenschaften aus früheren bergbaulichen und industriellen Tätigkeiten und andere natürliche Quellen verursacht werden. Das hat sich auch auf die Mitgliederzahl des AKURA ausgewirkt, die sich inzwischen fast verdoppelt hat.

Der AKURA führte bisher 18 Sitzungen durch, die nicht nur bei den Mitgliedern des Fachverbandes, sondern auch bei anderen Interessenten große Resonanz finden. Regelmäßig nehmen ca. 50 Personen an den Sitzungen des Arbeitskreises teil.

In den ersten Arbeitskreissitzungen waren Diskussionen zu folgenden Problemkreisen die Schwerpunkte:
Grundprinzipien des Strahlenschutzes und ihre Umsetzung in die Praxis bei planbaren Tätigkeiten und bei Interventionen (Sanierungsmaßnahmen)

• Grenzwerte/Richtwerte,
• Strahlenexpositionen durch Radon und seine Zerfallsprodukte,
• Methoden zur Messung der natürlichen Umweltradioaktivität

Bereits in der konstituierenden Sitzung beschloß der Arbeitskreis jedoch auch, durch eigene Arbeiten die Sachdiskussion zu Problemen des Strahlenschutzes bei bergbaulichen Tätigkeiten und bergbaulichen Hinterlassenschaften voranzubringen und Beiträge zur Lösung praktischer Fragen zu leisten. Dazu wurden im Verlaufe der Zeit Arbeitsgruppen gebildet, die sich u.a. mit folgenden Fragen beschäftigen:

• Strahlenexposition durch Radon/Radonzerfallsprodukte bei beruflichen Tätigkeiten
• Analyse bisher angewendeter Kriterien für die Anerkennung von Berufskrankheiten bei Beschäftigten aus dem Uranerzbergbau,
• Bewertung der Strahlenexposition aus bergbaulichen Hinterlassenschaften,
• Messung von Radon/Radonzerfallsprodukten,
• Methodische Fragen der Überwachung bei bergbaulichen Tätigkeiten,
• Kriterien zur Rechtfertigung von Sanierungsmaßnahmen
• Fragen der Optimierung bei der Definition von Sanierungszielen
• Vorschläge zur Einbeziehung natürlicher Strahlenquellen bei der Novellierung der Strahlenschutzrechtsvorschriften
• Bewertung von Radonmessungen in der Bodenluft

Sekretär des Arbeitskreises

Dr. rer. nat. Eckhard Ettenhuber, geb. 1941, Studium der Chemie an der Humboldt-Universität zu Berlin, Diplomexamen 1964. Wissenschaftlicher Assistent am Chemischen Institut der Humboldt-Universität zu Berlin; Promotion 1968. Von 1969 bis 1990 Wissenschaftlicher Mitarbeiter, Arbeits-
gruppen-/Abteilungsleiter im Institut für Umweltüberwachung des SAAS; Arbeiten auf dem Gebiet der Überwachung der Umweltaktivität.

9.14 Arbeitskreis „FRANCOPHONE“ (AKFRANCOPHONE) (Christophe Murith)

Folgende SFRP-Mittel stehen den AK-Francophone-Mitgliedern zu Verfügung:

- SFRP-Veranstaltungen in den Bereichen Umwelt, Technischer Strahlenschutz, Nicht-ionisierende Strahlung, Forschung und Gesundheit.
- Zweijähriger nationaler Kongress für Informationsaustausch im Strahlenschutz
- Revue „Radioprotection“ (vierteljährlich), mit wissenschaftlichen Beiträgen in französisch und englisch
- Arbeiten der Kommissionen und der thematischen Arbeitsgruppen
- Internationale Tagungen

AKFrankophone Dokumente und Informationen werden dem FS-Präsident weitergeleitet.

Sekretär des Arbeitskreises
ist derzeit Christophe Murith
10. Der Fachverband im Kerntechnischen Ausschuss (KTA)
(D.E. Becker/S. Sackmann)

Der Kerntechnische Ausschuss hat "die Aufgabe, auf Gebieten der Kerntechnik, bei denen sich aufgrund von Erfahrungen eine einheitliche Meinung von Fachleuten der Hersteller, Ersteller und Betreiber von Atomanlagen, der Gutachter und Behörden abzeichnet, für die Aufstellung sicherheitstechnischer Regeln zu sorgen und deren Anwendung zu fördern".

Der Kerntechnische Ausschuss setzt sich aus je 10 sachverständigen Mitgliedern
- der Hersteller und Ersteller von Atomanlagen,
- der Betreiber von Atomanlagen,
- der für den Vollzug des Atomgesetzes bei Atomanlagen zuständigen Behörden der Länder und des zuständigen Bundesministeriums,
- der Gutachter und Beratungsorganisationen sowie
- sonstiger mit der Kerntechnik befaßten Behörden, Organisationen und Stellen zusammen.

Der Kerntechnische Ausschuss bildet nach Bedarf Unterausschüsse. Zur Zeit sind eingesetzt:
- Unterausschuss PROGRAMM UND GRUNDSATZFRAGEN (UA-PG)
- Unterausschuss ANLAGEN- UND BAUTECHNIK (UA-AB)
- Unterausschuss BETRIEB (UA-BB)
- Unterausschuss ELEKTRO- UND LEITTECHNIK (UA-EL)
- Unterausschuss MECHANISCHE KOMPONENTEN (UA-MK)
- Unterausschuss REAKTORKERN UND SYSTEMAUSLEGUNG (UA-RS)
- Unterausschuss STRAHLENSCHUTZTECHNIK (UA-ST)

Der KTA-Unterausschuss Strahlenschutztechnik erarbeitet für sämtliche Regeln der Reihen KTA 1300 (radiologischer Arbeitsschutz), 1500 (Strahlenschutz und Überwachung) und 3600 (Aktivitätskontrolle und -führung) die Beschlussvorlagen für den Kerntechnischen Ausschuss und überprüft bei aufgestellten Regeln mindestens alle 5 Jahre deren Weitergültigkeit. Diesem KTA-Unterausschuss gehören als Vertreter des Fachverbandes Dr. D. E. Becker und als dessen Vertreter Dr. R. Hock und Dr. K.-D. Wünsch an.
Nachfolgend eine Übersicht über das Regelprogramm des KTA, das dem KTA-UA Strahlenschutztechnik zugeordnet ist.

Regel-Nr. KTA
<table>
<thead>
<tr>
<th>KTA</th>
<th>Titel</th>
<th>Letzte Fassung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>1300 Radiologischer Arbeitsschutz</td>
<td></td>
</tr>
<tr>
<td>1301.1</td>
<td>Berücksichtigung des Strahlenschutzes der Arbeitskräfte bei Auslegung und Betrieb von Kernkraftwerken;</td>
<td>11/84</td>
</tr>
<tr>
<td></td>
<td>Teil 1: Auslegung</td>
<td></td>
</tr>
<tr>
<td>1301.2</td>
<td>Berücksichtigung des Strahlenschutzes der Arbeitskräfte bei Auslegung und Betrieb von Kernkraftwerken;</td>
<td>6/89</td>
</tr>
<tr>
<td></td>
<td>Teil 2: Betrieb</td>
<td></td>
</tr>
</tbody>
</table>

Regel-Nr. KTA
<table>
<thead>
<tr>
<th>KTA</th>
<th>Titel</th>
<th>Letzte Fassung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>1500 Strahlenschutz und Überwachung</td>
<td></td>
</tr>
<tr>
<td>1501</td>
<td>Ortsfestes System zur Überwachung von Ortsdosisleistungen innerhalb von Kernkraftwerken</td>
<td>6/91</td>
</tr>
<tr>
<td>1502.1</td>
<td>Überwachung der Radioaktivität in der Raumluft von Kernkraftwerken;</td>
<td>6/86</td>
</tr>
<tr>
<td></td>
<td>Teil 1: Kernkraftwerke mit Leichtwasserreaktor</td>
<td></td>
</tr>
<tr>
<td>(1502.2)³</td>
<td>Überwachung der Radioaktivität in der Raumluft von Kernkraftwerken;</td>
<td>6/89</td>
</tr>
<tr>
<td></td>
<td>Teil 2: Kernkraftwerke mit Hochtemperaturreaktor</td>
<td></td>
</tr>
<tr>
<td>1503.1</td>
<td>Überwachung der Ableitung gasförmiger und aerosolgebundener radioaktiver Stoffe;</td>
<td>6/93</td>
</tr>
<tr>
<td></td>
<td>Teil 1: Überwachung der Ableitung radioaktiver Stoffe mit der Kaminfortluft bei bestimmungsgemäßem Betrieb</td>
<td>ÄEV</td>
</tr>
<tr>
<td>1503.2</td>
<td>Überwachung der Ableitung gasförmiger und aerosolgebundener radioaktiver Stoffe;</td>
<td>6/99</td>
</tr>
<tr>
<td></td>
<td>Teil 2: Überwachung und Ableitung radioaktiver Stoffe mit der Kaminfortluft bei Störfällen</td>
<td></td>
</tr>
</tbody>
</table>

### Regel-Nr.	Titel	Letzte Fassung
1503.3 | Überwachung der Ableitung gasförmiger und aerosolgebundener radioaktiver Stoffe; Teil 3: Überwachung der nicht mit der Kaminfortluft abgeleiteten radioaktiven Stoffe | 6/99
1504 | Überwachung der Ableitung radioaktiver Stoffe mit Wasser | 6/94
1505 | Nachweis der Eignung von Strahlungsmeßeinrichtungen | REV
1506 | Messung der Ortsdosisleistung in Sperrbereichen von Kernkraftwerken | 6/86
1507 | Überwachung der Ableitungen radioaktiver Stoffe bei Forschungsreaktoren | 6/98
1508 | Instrumentierung zur Ermittlung der Ausbreitung radioaktiver Stoffe in der Atmosphäre | 9/88

### Regel-Nr.	Titel	Letzte Fassung
3600 | Aktivitätskontrolle und -führung | 6/90 ÄEV
3601 | Lüftungstechnische Anlagen in Kernkraftwerken | 6/90 ÄEV
3602 | Lagerung und Handhabung von Brennelementen, Steuerelementen und Neutronenquellen in Kernkraftwerken mit Leichtwasserreaktoren | 6/90 ÄEV
3603 | Anlagen zur Behandlung von radioaktiv kontaminiertem Wasser in Kernkraftwerken | 6/91 ÄEV
3604 | Lagerung, Handhabung und innerbetrieblicher Transport radioaktiver Stoffe (mit Ausnahme von Brennelementen) in Kernkraftwerken | 6/83 ÄEV
3605 | Behandlung radioaktiv kontaminiertes Gase in Kernkraftwerken mit Leichtwasserreaktoren | 6/89 ÄEV
3606 | Behandlung radioaktiver Konzentrate in Kernkraftwerken | REV

REV: Regelantrag in Vorbereitung
ÄEV: Regeländerungsentwurf in Vorbereitung
* Englische Übersetzung liegt vor

Diese Probleme waren auch Gegenstand einer weiteren, eingehenden Beratung mit folgendem Ergebnis:

- Es soll eher Museumscharakter als den Charakter einer universitären Sammlung erhalten.
- Im Vordergrund soll zwar Präsentation stehen, ein experimenteller Teil soll jedoch nicht fehlen.
- Es soll ein Strahlenschutz- und kein Strahlenanwendungs-Museum werden.
- Es soll versucht werden, Geräteentwicklungslinien darzustellen.
- Instandsetzung und Beschreibung von Geräten für erste Ausstellungen soll betrieben werden.
- Die Gründung eines Fördervereins wurde erörtert.

Eine Direktoriums-Sitzung des Fachverbandes fand eigens in Remscheid-Lennep statt, um das dortige Röntgen-Museum zu besichtigen und die Probleme eines Museums mit dem dortigen Direktor diskutieren zu können.

Am 2.3.1995 fand die 1. Sitzung der Museumskommission des Fachverbandes statt:

- Neben Berichten über den Bestand an Geräten und Literatur sowie einer Besichtigung des Gerätebestandes ging es vor allem um das weitere Vorgehen, die Räumlichkeiten, die Finanzierung und Konzepte.
- Es wurde deutlich, dass das Grundkonzept u.a. sehr von den räumlichen Gegebenheiten, welche nicht bekannt waren, abhängig war. Insofern konnten noch keine detaillierten Vorstellungen zur Gestaltung entwickelt werden. Als Flächenmindestbedarf wurden 300 m² genannt.
- Für die Beschaffung musealer Literatur und für Serviceleistungen u.a. wurden aus dem FS-Etat jährlich 10.000,- DM zugesagt.
- Die Gründung eines Fördervereins wurde abgelehnt; stattdessen soll der FS allein alle fördernden Funktionen übernehmen. Dies soll der in Frage kommenden Öffentlichkeit bekannt gemacht werden.
- Die Einrichtung eines Arbeitskreises wurde hingegen befürwortet.
- Neben arbeitsplatzbezogener Strahlenschutzmesstechnik soll auch entsprechende Umweltmesstechnik einbezogen werden.
• Neben eigenen Fachkenntnissen sollte das Wissen anderer Institutionen genutzt werden, da schließlich kein Mitglied der Museumskommission aus dem museums-pädagogischen oder anderweitig mit Öffentlichkeitsarbeit befaßten Bereich kommt. Auch eine Leihpraxis mit anderen Museen könnte initiiert werden.

Das vorgesehene Museum sollte sich jedoch nicht nur auf eine bestimmte Zielgruppe, die Strahlenschutzmeßtechniker, beschränken. Es ist deshalb anzustreben, den Strahlenschutz in seiner Gesamtheit als Teil des Arbeits- und Umweltschutzes in einer Ausstellung darzustellen.

11.1 Geräteinventar des Strahlenschutzmuseums (Stand: 12.1999)

<table>
<thead>
<tr>
<th>Lfd. Nr.</th>
<th>Bezeichnung / Beschreibung</th>
<th>Typ</th>
<th>Nummer</th>
<th>Herstellungs-/ Hersteller / Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>jahr (Kurzbezeichnung)</td>
</tr>
<tr>
<td>3</td>
<td>Automatic Alarm Dosimeter</td>
<td>RAD-21</td>
<td>760006</td>
<td><1977 Wallace Oy</td>
</tr>
<tr>
<td>10</td>
<td>Neutronen-Ratemeter</td>
<td>H 1348</td>
<td>153</td>
<td>Herfurth</td>
</tr>
<tr>
<td>23</td>
<td>Strahlenüberwachungssystem</td>
<td>LB 1026</td>
<td>1099</td>
<td>Berthold</td>
</tr>
<tr>
<td>(ohne Sonde)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Zählrohrgerät (ohne Sonde)</td>
<td>GZS-A</td>
<td>55313</td>
<td>Berthold</td>
</tr>
<tr>
<td>28</td>
<td>Probenwechsler</td>
<td>SML 310</td>
<td>4404</td>
<td>MAB</td>
</tr>
<tr>
<td>30</td>
<td>PSEV (ca. 14 cm Durchmesser)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Frisch Grid Chamber</td>
<td>RLD-1</td>
<td>316</td>
<td>1960 Tracerlab</td>
</tr>
<tr>
<td>34.1</td>
<td>Vibrating Reed Electrometer</td>
<td>Cary 31</td>
<td>31-1496</td>
<td>Applied Physics Corp.</td>
</tr>
<tr>
<td>34.2</td>
<td>Meßkammer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.3</td>
<td>Meßkammer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.4</td>
<td>Meßkammer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Strahlungsmeßgerät (ohne Sonde)</td>
<td>LB 2551</td>
<td>6646</td>
<td>Berthold,</td>
</tr>
<tr>
<td>42</td>
<td>Alpha-Sonde mit Probenwechsler</td>
<td>1355 B</td>
<td>75-393</td>
<td>1958 Fleming Radio Developments</td>
</tr>
<tr>
<td>44</td>
<td>Neutronenmonitor</td>
<td>ELM 714</td>
<td>7026</td>
<td>AEG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.2</td>
<td>Sonde mit Moderatorkugel</td>
<td></td>
<td></td>
<td>Texas Nuclear,</td>
</tr>
<tr>
<td>48</td>
<td>Strahlungsmeßgerät ESONE</td>
<td>LB 2553 G</td>
<td>172656</td>
<td>1965 Berthold,</td>
</tr>
<tr>
<td>(ohne Sonde)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Durchflußzählrohr</td>
<td></td>
<td></td>
<td>Berthold</td>
</tr>
<tr>
<td>58</td>
<td>Alarmschwelle</td>
<td>LB 1241</td>
<td>43896</td>
<td>Berthold</td>
</tr>
<tr>
<td>60</td>
<td>Zählrohr</td>
<td>20-12</td>
<td>505</td>
<td>Berthold</td>
</tr>
<tr>
<td>61</td>
<td>Durchflußzählrohler</td>
<td>TMH 4396</td>
<td>4396</td>
<td>MAB</td>
</tr>
<tr>
<td>62</td>
<td>Tragbares DL-Meßgerät TOL-D</td>
<td></td>
<td>34926</td>
<td>Berthold</td>
</tr>
<tr>
<td>62.1</td>
<td>Zählrohr mit Vorverstärker</td>
<td>VG 1/..</td>
<td>41926</td>
<td>Frieske & Hoepfner</td>
</tr>
<tr>
<td>63</td>
<td>Strahlenmeßplatz</td>
<td>FH 49</td>
<td>665</td>
<td>Intertechnique</td>
</tr>
<tr>
<td>64</td>
<td>Vielkanalanalysator</td>
<td>DIDAC 4000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.1</td>
<td>Drucker</td>
<td>D 11-E</td>
<td>8741</td>
<td>Kienzle</td>
</tr>
<tr>
<td>Lfd. Nr.</td>
<td>Bezeichnung / Beschreibung</td>
<td>Typ</td>
<td>Nummer</td>
<td>Herstellungs- Jahr</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------</td>
<td>-----------</td>
<td>--------</td>
<td>--------------------</td>
</tr>
<tr>
<td>68</td>
<td>Auswertegerät für Kondensator-Kammern (Kondiometer)</td>
<td>80064</td>
<td>1969</td>
<td>PTW</td>
</tr>
<tr>
<td>69</td>
<td>Tritiummonitor, betreibbar an LB 1026</td>
<td>LB 106 B 1091</td>
<td>1958</td>
<td>Berthold</td>
</tr>
<tr>
<td>70</td>
<td>Meßplatz</td>
<td>1000 Scaler</td>
<td>1958</td>
<td>Tracerlab</td>
</tr>
<tr>
<td>71</td>
<td>Low Level Radon Counting System</td>
<td>LLRC-2</td>
<td>1970</td>
<td>Johnston Laboratories Inc.</td>
</tr>
<tr>
<td>73</td>
<td>Hand-Fuß-Monitor (Gestell)</td>
<td></td>
<td></td>
<td>Berthold</td>
</tr>
<tr>
<td>73.1</td>
<td>Rate Meter</td>
<td>LB 1240 15-1707</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.2</td>
<td>Rate Meter</td>
<td>LB 1240 04-4696</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.3</td>
<td>Zählrohr</td>
<td>GFDZ 136 100-180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.4</td>
<td>Zählrohr</td>
<td>GFDZ 178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.5</td>
<td>Fußsonde</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Zehn Zählrohre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Durchflußzählrohr</td>
<td>FHT 650 646</td>
<td></td>
<td>Frieske & Hoepfner</td>
</tr>
<tr>
<td>78</td>
<td>Szintillationssonde</td>
<td>FH 421 1381</td>
<td></td>
<td>Frieske & Hoepfner</td>
</tr>
<tr>
<td></td>
<td>(ohne Szintillator)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Zählrohrsonde (ohne Zählrohr)</td>
<td>FH 484 16</td>
<td></td>
<td>Frieske & Hoepfner</td>
</tr>
<tr>
<td>82</td>
<td>Anpaßgerät für Schreiber PC 120</td>
<td>FH 435 86</td>
<td></td>
<td>Frieske & Hoepfner</td>
</tr>
<tr>
<td>84</td>
<td></td>
<td>LB 106-2 1045</td>
<td></td>
<td>Berthold</td>
</tr>
<tr>
<td>86</td>
<td>Zählrohr</td>
<td>FHZ 1 620</td>
<td></td>
<td>Frieske & Hoepfner</td>
</tr>
<tr>
<td>87</td>
<td>Zählrohr</td>
<td>FHZ 15a 11437</td>
<td></td>
<td>Frieske & Hoepfner</td>
</tr>
<tr>
<td>89</td>
<td>Zählrohr</td>
<td>FHZ 15a 11387</td>
<td></td>
<td>Frieske & Hoepfner</td>
</tr>
<tr>
<td>91</td>
<td>Zählrohranschluß</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Zählrohr (Fenster defekt)</td>
<td>FHZ 15a 13003</td>
<td></td>
<td>Frieske & Hoepfner</td>
</tr>
<tr>
<td>93</td>
<td>Zwei Ladegeräte für LB 7614</td>
<td></td>
<td></td>
<td>Berthold</td>
</tr>
<tr>
<td>96</td>
<td>Impulszähler</td>
<td>FHT 221 B 660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.1</td>
<td>Sonde</td>
<td></td>
<td>639</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>TLD-Meßplatz</td>
<td>RDC 3 A 112217</td>
<td></td>
<td>Meßelektronik Dresden</td>
</tr>
<tr>
<td>102.1</td>
<td>Strahlenschutzhämmmer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lfd. Nr.</td>
<td>Bezeichnung / Beschreibung</td>
<td>Typ</td>
<td>Nummer</td>
<td>Herstellungs-</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------</td>
<td>-----</td>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>jahr</td>
</tr>
<tr>
<td>103</td>
<td>Einkanalmeßplatz</td>
<td>VA-D 30</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>TLD-Meßplatz</td>
<td>VA-M 164</td>
<td>2040</td>
<td>164</td>
</tr>
<tr>
<td>107</td>
<td>TLD-Meßplatz</td>
<td>VA-M 30</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Impulszähler</td>
<td>VA-G 60</td>
<td>N 02</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Radioaktivitätsmeßgerät</td>
<td>RAM II a</td>
<td>61097</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>HLD mit Vorverstärker</td>
<td>HSC 761 R</td>
<td>474</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>HLD (Anschauungsobjekt)</td>
<td>RWA 72 M</td>
<td>312483</td>
<td>1983</td>
</tr>
<tr>
<td>121</td>
<td>Schwellwertwarngerät</td>
<td>PW 4010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Schwellwertwarngerät</td>
<td>PW 4010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Taschen-Dosimeter</td>
<td>PW 4010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Radiometer</td>
<td>RK-67-3</td>
<td>52</td>
<td>1984</td>
</tr>
<tr>
<td>132</td>
<td>Wischfilterhalter</td>
<td>VA-H-402</td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Absorbersatz</td>
<td>D-0,1</td>
<td>1969</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>Füllhalterdosimeter</td>
<td>SAK 17 N 2 011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>Alpha-Szintillator</td>
<td>SAK 17 N 2 011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>Sonde</td>
<td>SGB-2P</td>
<td>599</td>
<td>1975</td>
</tr>
<tr>
<td>149</td>
<td>Sonde</td>
<td>SGB-1P</td>
<td>1333</td>
<td>1976</td>
</tr>
<tr>
<td>165</td>
<td>Vielkanalanalysator</td>
<td>SA 40 B</td>
<td>589</td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>Zweifadenelektrometer</td>
<td>Babyline 31</td>
<td>1077</td>
<td>1936</td>
</tr>
<tr>
<td>184</td>
<td>Dosisseitungsmeßgerät</td>
<td>Babyline 31</td>
<td>1077</td>
<td>1936</td>
</tr>
<tr>
<td>190</td>
<td>Röntgenröhre</td>
<td>T OTK 3</td>
<td></td>
<td>1936</td>
</tr>
<tr>
<td>200</td>
<td>KSMG 1/1K-2</td>
<td>Originalverpackung</td>
<td></td>
<td>1936</td>
</tr>
<tr>
<td>201</td>
<td>KSMG 1/1K-2</td>
<td>Originalverpackung</td>
<td></td>
<td>1936</td>
</tr>
<tr>
<td>202</td>
<td>KSMG 1/1H</td>
<td>Originalverpackung</td>
<td></td>
<td>1936</td>
</tr>
<tr>
<td>203</td>
<td>KSMG 1/1S</td>
<td>Originalverpackung</td>
<td></td>
<td>1936</td>
</tr>
<tr>
<td>204</td>
<td>KSMG 1/1A</td>
<td>Originalverpackung</td>
<td></td>
<td>1936</td>
</tr>
<tr>
<td>205</td>
<td>KSMG 1/1K-1</td>
<td>Originalverpackung</td>
<td></td>
<td>1936</td>
</tr>
<tr>
<td>206</td>
<td>KSMG 1/1N</td>
<td>Originalverpackung</td>
<td></td>
<td>1936</td>
</tr>
<tr>
<td>207</td>
<td>KSMG 1/1Z</td>
<td>Originalverpackung</td>
<td></td>
<td>1936</td>
</tr>
<tr>
<td>208</td>
<td>KSMG-Kabel</td>
<td>Originalverpackung</td>
<td></td>
<td>1936</td>
</tr>
</tbody>
</table>
11.2 FS-Strahlenschutz-Museum - Antiquarischer Bücherbestand
(sortiert nach Erscheinungsjahr)

<table>
<thead>
<tr>
<th>Inv.-Nr.</th>
<th>Titel</th>
<th>Autor</th>
<th>Verlag</th>
<th>Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>006</td>
<td>Radium and other Radio-Active Substances</td>
<td>Hammer, William J.</td>
<td>Nostrand - New York</td>
<td>1903</td>
</tr>
<tr>
<td>015</td>
<td>Bäder-Almanach - für Ärzte und Heilbedürftige</td>
<td>Verlag Mosse (Hrg.)</td>
<td>Mosse - Berlin</td>
<td>1907</td>
</tr>
<tr>
<td>013</td>
<td>Radium - Die Natur des Radiums</td>
<td>Soddy, Frederick</td>
<td>Barth - Leipzig</td>
<td>1909</td>
</tr>
<tr>
<td>002/2</td>
<td>Radioaktivität, Die ... von Madame P. Curie (Band 2)</td>
<td>Finkenstein, B.</td>
<td>Adadem. Verlagsges. - Leipzig</td>
<td>1911</td>
</tr>
<tr>
<td>002/1</td>
<td>Radioaktivität, Die ... von Madame P. Curie (Band 1)</td>
<td>Finkenstein, B.</td>
<td>Adadem. Verlagsges. - Leipzig</td>
<td>1911</td>
</tr>
<tr>
<td>008</td>
<td>Messungen durchdr. Strahlung bei Freiballonfahrten</td>
<td>Hess, Viktor F.</td>
<td>Staatsdruckerei - Wien</td>
<td>1911</td>
</tr>
<tr>
<td>028</td>
<td>Radium in Biologie und Heilkunde</td>
<td>Dr. F. Gudzent Prof. Dr. W. Marckwald</td>
<td>Johann Ambrosius Barth - Leipzig</td>
<td>1912</td>
</tr>
<tr>
<td>014/1</td>
<td>Radio-Elemente, Die Chemie der Radioelemente (Band 1)</td>
<td>Soddy, Frederick</td>
<td>Barth - Leipzig</td>
<td>1912 / 1914</td>
</tr>
<tr>
<td>014/2</td>
<td>Radio-Elemente, Die Chemie der Radioelemente (Band 2)</td>
<td>Soddy, Frederick</td>
<td>Barth - Leipzig</td>
<td>1912 / 1914</td>
</tr>
<tr>
<td>012</td>
<td>Radioactive Substances and their Radiations</td>
<td>Rutherford, Ernest</td>
<td>University Press - Cambridge</td>
<td>1913</td>
</tr>
<tr>
<td>004</td>
<td>Radioaktivität von Boden und Quellen</td>
<td>Gockel, A.</td>
<td>Vieweg - Braunschweig</td>
<td>1914</td>
</tr>
<tr>
<td>005</td>
<td>Röntgendiagnostik - Lehmanns med. Atlanten, Bd. VII</td>
<td>Groedel, Franz M.</td>
<td>Lehmann - München</td>
<td>1921</td>
</tr>
<tr>
<td>003</td>
<td>Röntgenstrahlen, Materialprüfung durch ...</td>
<td>Glocker, Richard</td>
<td>Springer - Berlin</td>
<td>1927</td>
</tr>
<tr>
<td>010</td>
<td>Röntgen-Diagnostik und Therapie</td>
<td>Kohlmann, Gerd (Hrg.)</td>
<td>Krager - Berlin</td>
<td>1928</td>
</tr>
<tr>
<td>025</td>
<td>Röntgen-Praxis 1. Jahrgang - 1929</td>
<td>Prof. R. Grashey Prof. H. Holfelder Prof. H. Holthusen</td>
<td>Georg Thieme Verlag - Leipzig</td>
<td>1929</td>
</tr>
<tr>
<td>011</td>
<td>Strahlenbehandlung, Grundlagen und neue Wege der ...</td>
<td>Reich, H.W.</td>
<td>Hippokrates - Stuttgart/Leipzig</td>
<td>1933</td>
</tr>
<tr>
<td>001</td>
<td>Curie - Madame Curie</td>
<td>Curie, Eve</td>
<td>Bertelsmann/Fischer - Wien</td>
<td>1937</td>
</tr>
<tr>
<td>023</td>
<td>Referatenzyklus über Strahlung und Biologie</td>
<td>Autorenkollektiv</td>
<td>S. Karger - Basel</td>
<td>1941</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>------------------</td>
<td>------------------</td>
<td>-----</td>
</tr>
<tr>
<td>007</td>
<td>Atomkerne, Die Physik der ...</td>
<td>Heisenberg, Werner</td>
<td>Vieweg - Braunschweig</td>
<td>1947</td>
</tr>
<tr>
<td>009</td>
<td>Radioaktive Strahlung, Technik des ...</td>
<td>Kment/Kuhn</td>
<td>Geest und Portig - Leipzig</td>
<td>1960</td>
</tr>
<tr>
<td>018</td>
<td>Atom am Horizont</td>
<td>Ernst Herbert Krause</td>
<td>Urania-Verlag - Leipzig/Jena</td>
<td>1960</td>
</tr>
<tr>
<td>016</td>
<td>Directory of Whole-Body Radioactivity ...</td>
<td>International Atomic Energy Agency</td>
<td>IAEA - Vienna</td>
<td>1964</td>
</tr>
<tr>
<td>017</td>
<td>Grundlagen des Strahlenschutzes</td>
<td>Eugen Sauter</td>
<td>Siemens AG - Berlin · München</td>
<td>1971</td>
</tr>
<tr>
<td>024</td>
<td>Die Bombe war ihr Schicksal</td>
<td>N. Ph. Davis</td>
<td>Herder - Freiburg - Basel - Wien</td>
<td>1971</td>
</tr>
<tr>
<td>030</td>
<td>40 Jahre Kernspaltung</td>
<td>Horst Wohlfarth</td>
<td>Wissenschaftl. Buchgesellschaft - Darmstadt</td>
<td>1979</td>
</tr>
<tr>
<td>019</td>
<td>Atom-Museum Haigerloch</td>
<td>Stadtverwaltung Haigerloch</td>
<td>Stadtverwaltung - Haigerloch</td>
<td>1982</td>
</tr>
<tr>
<td>020</td>
<td>Man nehme einen Geigerzähler Teil 1 - ...</td>
<td>R. Maushart</td>
<td>GIT Verlag - Darmstadt</td>
<td>1985</td>
</tr>
<tr>
<td>021</td>
<td>Man nehme einen Geigerzähler Teil 2 - ...</td>
<td>R. Maushart</td>
<td>GIT Verlag - Darmstadt</td>
<td>1985</td>
</tr>
<tr>
<td>029</td>
<td>Strahlen und Strahlenschutz</td>
<td>Hans Kiefer Winfried Koelzer</td>
<td>Springer Verlag - Berlin ...</td>
<td>1986</td>
</tr>
<tr>
<td>022</td>
<td>Überwachung der Radioaktivität in der Umwelt</td>
<td>R. Maushart</td>
<td>GIT Verlag - Darmstadt</td>
<td>1989</td>
</tr>
<tr>
<td>026</td>
<td>Strahlen und Strahlenschutz 3. Auflage Unter Berücksichtigung der neuen ICRP-Daten</td>
<td>Hans Kiefer Winfried Koelzer</td>
<td>Springer Verlag - Berlin ...</td>
<td>1992</td>
</tr>
<tr>
<td>031</td>
<td>High Levels of Natural Radiation 96</td>
<td>Wie, Luxin Sugahara, Tsutomu Tao. Zufan</td>
<td>Elsevier - Amsterdam ...</td>
<td>1997</td>
</tr>
</tbody>
</table>
12. Tagungen und Seminare des Fachverbandes und der IRPA

1966 IRPA - 1, Rom, Italy
1970 IRPA - 2, Brighton, UK
1973 IRPA - 3, Washington, DL, USA
1977 IRPA-4 Paris, France
1979 13. Jahrestagung / 7. IRPA-Regionalkongress mit NVS (NL) und
ÖVS (A), 15. - 19. Oktober, Köln
1980 IRPA-5 Jerusalem, Israel
1984 IRPA-6, 7. - 12. Mai, Berlin, Germany
1988 IRPA-7 Sydney, Australia
VDSÄ, SGSM, DGMP)
1990 FS-VSS-Seminar Berlin, 19./20. September
1991 Seminar Johanngeorgenstadt, 28./29. Oktober, Radonschutz bei Bausanierung
(für Bausachverständige)
1991 IRPA 8, Montreal, Canada
1999 IRPA 9, Wien
1999 Grenzüberschreitender Notfallschutz (gemeinsam mit SFRP), Zürich 03.-05. März 1999
13. Publikationen des Fachverbandes

13.1 Gesamtverzeichnis

(FS-1) "Nicht-ionisierende Strahlung" Informationstagung des FS 20.3.1973 Bern (vergriffen)

FS-2 "Raum- und Abluftüberwachung auf Radioaktivität" Kolloquium Arbeitskreis Arbeitsplatz-Überwachung Karlsruhe 15./16.11. 1973 (= Bericht KfK-1899)

FS-3 "Betadosimetrie - Probleme und Tendenzen", Arbeitskreis Dosismessung externer Strahlung (1975) (= Bericht KfK-2185)

(FS-4) 1. Jahrestagung: "Erfahrungen bei der Anwendung von Strahlenschutzregelungen in Kerntechnik und Industrie" 1.-3.6. 1966 Jülich (vergriffen)

(FS-10) 7. Jahrestagung: "Die Strahlenbelastung der Bevölkerung durch medizinische und diagnostische Verwendung ionisierender Strahlen" 21./22.3.1973 Bern (vergriffen)

(FS----) "10 Jahre Fachverband für Strahlenschutz" Jubiläumsschrift Juni 1976

FS-77-14-AKI "Inkorporationsüberwachung auf Tritium" Loseblattsammlung Arbeitskreis Inkorporationsüberwachung 1977/80

FS-78-17-AKD "Thermolumineszenz- und Phosphatglas-Dosimetersysteme im Bereich kleiner Dosen - Vorstellung eines Testprogrammes und Ergebnisse an 43 Systemen" Arbeitskreis Dosismessung externer Strahlung, März 1978 (= Bericht KfK-2626)

FS-81-21-AKI "Inkorporationsüberwachung auf Jod" Loseblattsammlung Arbeitskreis Inkorporationsüberwachung (1981)
FS-80-23-AKI Inkorporationsüberwachung auf Uran" Loseblattsammlung Arbeitskreis Inkorporationsüberwachung (Sept. 1980)
FS-80-24-AKI "Direktmessung der Körperaktivität" Loseblattsammlung Arbeitskreis Inkorporationsüberwachung (1981)
FS-81-26-AKA "Lernzielkatalog zur Fachkunderichtlinie" Loseblattsammlung Arbeitskreis Ausbildung (1981)
FS-82-29-AKD "Technische Empfehlungen für Festkörperdosimeter zur Umgebungsüberwachung", Arbeitskreis Dosismessung externer Strahlung
FS-83-33-NIR "Ultraviolettstrahlung" Loseblattsammlung Arbeitskreis Nichtionisierende Strahlung
FS-83-34-NIR "Infraschall" Loseblattsammlung Arbeitskreis Nichtionisierende Strahlung
FS-84-36-NIR "Ultrasonic" Loseblattsammlung Arbeitskreis Nichtionisierende Strahlung
FS-86-39-AKU/e M. Winter et.al.: "Radioactivity in the Federal Republic of Germany and in Switzerland After the Reactor Accident at Chernobyl!" (Translation March 1987)

*FS-87-45-AKI: "Inkorporationsüberwachung auf Plutonium", Loseblattsammlung des Arbeitskreises Inkorporationsüberwachung, Nov. 1987. (Dr. H. Schieferdecker et.al.)

*FS-87-46-AKI: "Inkorporationsüberwachung auf Promethium", Loseblattsammlung des Arbeitskreises Inkorporationsüberwachung, Nov. 1987. (Dr. H. Schieferdecker et.al.)

*FS-88-47-T:)ab 1989:

*FS-89-48-T:

*FS-89-49-AKI: "Inkorporationsüberwachung auf Tritium" Loseblattsammlung des Arbeitskreises Inkorporationsüberwachung, revidierte Ausgabe (ersetzt FS-77-14-AKI, in Vorbereitung)

*FS-91-57: "25 Jahre FS - Daten und Fakten" (H. Brunner, Dr. R. Maushart) Sept. 1991

*FS-91-58: "Strahlenschutz-Technik, Strahlenschutz-Meßtechnik" (Dr. R. Maushart) Sept. 1991

*FS-92-59-AKNIR Loseblattsammlung AKNIR Sept 1992:

*FS-92-59/1-AKNIR "Licht"

*FS-92-59/2-AKNIR "Laserstrahlung"

*FS-92-59/3-AKNIR "Ultraviolettstrahlung"

*FS-92-59/4-AKNIR "Strahlung an Bildschirmen"

*FS-92-59/5-AKNIR "Infraschall"

*FS-92-59/6-AKNIR "Ultraschall"

*FS-92-59/7-AKNIR "Infrarot"

*FS-92-59/8-AKNIR "Elektromagnetische Felder"

FS-92-62/2-AKURA 2. erweiterte Ausgabe Nov. 1993

FS-92-64/1/2/3-AKAMuster-Strahlenschutzanweisungen", Band 1: Okt. 1992, Band 2: 1993

FS-93-66-AKA Prüfungsfragen zur Fachkunde nach StrlSchV, Arbeitskreis Ausbildung, 1993

FS-93-68- ???

FS-93-69-AKI "Loseblattsammlung THORIUM", Arbeitskreis Inkorporationsüberwachung

FS-93-70-AKE "Konzeptionelle Darstellung der oberflächennahen Deponierung ausgewählter radioaktiver Abfälle", Darlegung des Arbeitskreises Entsorgung (AKE), Dez. 1993

FS-94-73-AKK "Daten und Fakten zum Umgang mit Radionukliden" (Nov. 1995)

FS-94-75-AKURA "Übersicht über die Messung von Radon und Radon-Folgeprodukten", Loseblatt Arbeitskreis Uranenbergbau und radioaktive Altlasten (AKURA), Sept. 1994

*FS-96-78-T Strahlenbiologie und Strahlenschutz (28. Jahrestagung Hannover)

FS-96-79-AKS Biologische Wirkung elektronomagnetischer Felder (Fortbildung Hannover)

FS-96-80 30 Jahre Fachverband für Strahlenschutz e. V. - Daten und Fakten - Raumluft-Aktivitätsüberwachung, Arbeitskreis Inkorporationsüberwachung

FS-97-82 Nicht besetzt

*FS-97-83-T Verwirklichung sicherer Arbeitsweisen (29. Jahrestagung Luzern)

FS-97-84/1 FS-Chronik 1966 - 1997

FS-97-87-W EURATOM-Strahlenschutzgrundnormen 1996 und die Novellierung des deutschen Strahlenschutzrechtes

FS-97-88-AKNI Leitfaden "Nichtonisierende Strahlung": Infraschall

FS-97-89-AKNR Leitfaden "Nichtonisierende Strahlung": Ultraschall

FS-97-90-AKNI Leitfaden "Nichtonisierende Strahlung": Elektromagnetische Felder

FS-97-91-AKNR Leitfaden "Nichtonisierende Strahlung": Sichtbare und infrarote Strahlung

FS-97-92-AKNR Leitfaden "Nichtonisierende Strahlung": Lichteinwirkungen - Messung und Beurteilung
FS-97-93-AKNIR Leitfaden "Nichtionisierende Strahlung": Ultraviolettstrahlung
FS-97-94-AKNIR Leitfaden "Nichtionisierende Strahlung": Laserstrahlung
FS-97-95-AKNIR Leitfaden "Nichtionisierende Strahlung": Solarstrahlung
FS-98-97-AGT nicht belegt
FS-98-99-AKA Fragenkatalog RöV
FS-98-100-AKA Fragenkatalog StrlSchV
FS-98-102-AKR Empfehlungen des AKR zur Strahlenschutzorganisation
FS-99-103-AKP Loseblattsammlung „Daten und Fakten zum Umgang mit Radionukliden“
FS-99-104-AKD Fortbildungstagung „Dosimetrie externer Strahlung: Aktuelle Entwicklungen“
 Tabarz, 24.-26. Februar 1999 - Erschienen als PTB-Bericht
FS-99-105-AKN „Grenzüberschreitender Notfallschutz“ Gemeinsames FS/AKN-SFRP-Seminar,
 Zürich, 3.-5. März 1999
FS-99-107-AKNIR Fortbildungsveranstaltung „Messung und Bewertung Nichtionisierender Strahlung“, 01. Okt.‘99, Köln
FS-99-108-AKSIG Nachweis-, Erkennungs- und Vertrauensgrenzen bei Kernstrahlungsmessungen
FS-99-109-AKB Empfehlungen für die Belehrung von Fahrzeugführern und Beifahrern, die Beförderung sonstiger radioaktiver Stoffe auf der Strasse ausführen (frühere Sigel-Nr. 103 wurde geändert in 109).
FS-00-110-C FS-Chronik 1966-2000

>>> Mit * oder ** bezeichnete Publikationen sind über den Buchhändel zu beziehen, die übrigen bei den im Sigel angegebenen Arbeitskreisen.
13.2 FS Jubiläen etc. (FS anniversaries etc.)

(FS--) "10 Jahre Fachverband für Strahlenschutz" Jubiläumsschrift Juni 1976
(FS--) "25 Jahre FS - Fakten und Daten" (Hrsg. R. Maushart) Sept. 1991
FS-96-80 30 Jahre FS: Daten und Fakten
FS-97-84/1 FS-Chronik 1966 - 1997

-> FS-76-16-T; FS-86-40-T; FS-91-55-T;

13.3 Allgemeine Strahlenschutzfragen (General topics of radiation protection)

(FS--) "Standpunkte des FS zu Fragen des Strahlenschutzes", Diskussionspapier des Direktoriums, 1986
FS-97-87-W EURATOM-Strahlenschutzgrundnormen 1996 und die Novellierung des deutschen Strahlenschutzrechtes
FS-98-102-AKR Empfehlungen des AKR zur Strahlenschutzorganisation

13.4 Altlasten, Radon, Uran / AKURA (Mining residues, Radon, Uranium)

*FS-91-56-T "Messung von Radon und Radonfolgeprodukten"
FS-92-62/2-AKURA 2. erweiterte Ausgabe Nov. 1993
FS-94-75-AKURA "Übersicht über die Messung von Radon und Radon-Folgeprodukten", Loseblatt Arbeitskreis Uranbergbau und radioaktive Altlasten (AKURA), Sept. 1994

13.5 Ausbildung / AKA (Education)

FS-81-26-AKA "Lernzielkatalog zur Fachkunderichtlinie"
Loseblattsammlung Arbeitskreis Ausbildung
FS-93-66-AKA Prüfungsfragen zur Fachkunde nach StrlSchV, Arbeitskreis Ausbildung, 1993
13.6 Beschleuniger (Accelerator)

-> FS-8; FS-90-60-T;

13.7 Praktischer Strahlenschutz / Dekontamination / AKP (Decontamination)

FS-94-73-AKK "Daten und Fakten zum Umgang mit Radionukliden" (Nov. 1995)

13.8 Arbeitsplatzüberwachung (Monitoring of workplaces)

FS-99-103-AKP Loseblattsammlung „Daten und Fakten zum Umgang mit Radionukliden"

13.9 Dosimetrie externer Strahlung / AKD (Dosimetry of External Radiation)

FS-3 "Betadosimetrie - Probleme und Tendenzen", Arbeitskreis Dosismessung externer Strahlung (1975) (= Bericht KfK-2185)
FS-78-17-AKD "Thermolumineszenz- und Phosphatglas-Dosimetersysteme im Bereich kleiner Dosen - Vorstellung eines Test-programmes und Ergebnisse an 43 Systemen" Arbeitskreis Dosismessung externer Strahlung, März 1978 (= Bericht KfK-2626)
FS-82-29-AKD "Technische Empfehlungen für Festkörperdosimeter zur Umgebungüberwachung", Arbeitskreis Dosismessung externer Strahlung
13.10 Gesetzgebung (Regulations)

13.11 Medizinischer Strahlenschutz (Medical radiation protection)
(Gemeinsame Tagungen mit der Vereinigung Deutscher Strahlenschutzärzte)

-> FS-6; FS-8; FS-10; FS-75-12-T; FS-80-25-T; FS-84-35-T; FS-86-40-T; FS-90-60-T;

13.12 Entsorgung / AKE (Waste management)

- Empfehlung zur Neubestimmung des Begriffes „Radioaktive Stoffe“ unter besonderer Berücksichtigung der Freistellung aus dem Atomrecht, 1996
FS-93-70-AKE "Konzeptionelle Darstellung der oberflächennahen Deponierung ausgewählter radioaktiver Abfälle", Darlegung des Arbeitskreises Entsorgung (AKE), Dez. 1993

-> FS-79-20-T; FS-82-27-T; FS-87-44-T; FS-91-55-T; FS-95-77-T;

13.13 Inkorporationsüberwachung / AKI (Incorporation monitoring)

FS-77-14-AKI "Inkorporationsüberwachung auf Tritium"
Loseblattsammlung Arbeitskreis Inkorporationsüberwachung 1977/80

FS-81-21-AKI "Inkorporationsüberwachung auf Jod" Loseblattsammlung Arbeitskreis Inkorporationsüberwachung (1981)

FS-80-23-AKI Inkorporationsüberwachung auf Uran" Loseblattsammlung Arbeitskreis Inkorporationsüberwachung (Sept. 1980)

FS-80-24-AKI "Direktmessung der Körperaktivität" Loseblattsammlung Arbeitskreis Inkorporationsüberwachung (Dez. 1980)

FS-87-45-AKI: "Inkorporationsüberwachung auf Plutonium",
(Dr. H. Schieferdecker et.al.)

FS-87-46-AKI: "Inkorporationsüberwachung auf Promethium",
(Dr. H. Schieferdecker et.al.)

FS-90-49-AKI: "Inkorporationsüberwachung auf Tritium"
Loseblattsammlung des Arbeitskreises Inkorporationsüberwachung, revidierte Ausgabe (ersetzt FS-77-14-AKI,

FS-92-65-AKI "Qualitätskontrolle bei der Inkorporationsüberwachung -
Teil 1: Ringversuch bei Ausscheidungsanalysen", Loseblattsammlung Arbeitskreis Inkorporationsüberwachung (AKI), Februar 1992

FS-93-69-AKI "Loseblattsammlung THORIUM" FS-92-65-AKI
"Qualitätskontrolle bei der Inkorporationsüberwachung -
Teil 1: Ringversuch bei Ausscheidungsanalysen", Loseblattsammlung Arbeitskreis Inkorporationsüberwachung (AKI), Februar 1992

FS-97-81-AKI Raumluf-Aktivitätsüberwachung, Arbeitskreis Inkorporationsüberwachung

13.14 Messtechnik (Measuring techniques)

FS-99-108-AKSIG Nachweis-, Erkennungs- und Vertrauensgrenzen bei Kernstrahlungsmessungen

FS-92-33-NIR "Ultraviolettstrahlung"
Loseblattsammlung Arbeitskreis
Nichtionisierende Strahlung

FS-84-36-NIR "Ultrasonic" Loseblattsammlung Arbeitskreis
Nichtionisierende Strahlung

FS-92-59-ANKIR Loseblattsammlung AKIR Sept 1992:

13.15 Nichtionisierende Strahlung / AKNIR (Non-ionizing radiation)

(FS-1) "Nicht-ionisierende Strahlung", Informationstagung des FS
20.3.1973 Bern (vergriffen)

FS-83-33-NIR "Ultraviolettstrahlung" Loseblattsammlung Arbeitskreis
Nichtionisierende Strahlung

FS-83-34-NIR "Infraschall" Loseblattsammlung Arbeitskreis
Nichtionisierende Strahlung

FS-84-36-NIR "Ultrasonic" Loseblattsammlung Arbeitskreis
Nichtionisierende Strahlung

FS-92-59-ANKIR Loseblattsammlung AKIR Sept 1992:
13.16 Notfallschutz (Emergency Planning)

FS-94-74-T

FS-97-86-AKN
Information von Behörden, Medien und Bevölkerung (Seminar Notfallschutz München) 08. - 10. Oktober 1997

FS-99-105-AKN
"Grenzüberschreitender Notfallschutz" Gemeinsames FS/AKN-SFRP-Seminar; Zürich, 3. - 5. März 1999

FS-81-28-AKOe

FS RS (Nr)/(Jahr)
Rundschreiben des FS, vierteljährlich (nur für Mitglieder, IRPA, Behörden, Fachinstitutionen), Red.: FS-Sekretär (bis 4/94)

seit 1995: StrahlenschutzPRAXIS, Vierteljahreszeitschrift, Verlag TÜV Rheinland Köln, (ersetzt Rundschreiben), Schriftleiter: R. Maushart

FS-00-110-C
FS-Chronik 1966-2000

13.17 Öffentlichkeitsarbeit (Public Relations)

FS-84-35-T; FS-88-47-T; FS-91-55-T; FS-94-71-T;

13.18 Radioökologie (Radioecology)

13.19 Tschernobyl

13.20 Umweltüberwachung / AKU (Environmental Monitoring)

13.21 Strahlenbiologie, Strahlenwirkungen (Radiation Biology)

13.22 Weltraum (Space)
-> FS-8;

13.23 Beförderung (Transport)
FS-99-109-AKB Empfehlungen für die Belehrung von Fahrzeugführern und Beifahrern, die Beförderung sonstiger radioaktiver Stoffe auf der Strasse ausführen

13.24 Praktischer Strahlenschutz (Radiation Protection)
FS-99-103-AKP Loseblattsammlung „Daten und Fakten zum Umgang mit Radionukliden“

*)ab 1989: Publikationsreihe "FORTSCHRITTE IM STRAHLENSCHUTZ:
ISSN 1013-4506 Verlag TÜV Rheinland, D-5000 Köln