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It is shown how the decision threshold, the detection limit and the limits of a coverage interval — summarily called the
characteristic limits — and, in addition, the best estimate and the associated standard uncertainty of a non-negative radiation
measurand are to be calculated by using the Monte Carlo (MC) method in ionising-radiation measurements. The limits are
mathematically defined by means of quantiles of the Bayesian distributions of the possible measurand values. The MC-
induced uncertainties of the limits and typical problems connected with MC application are also treated. The paper can serve
as a bridge between the ISO Guide to the Expression of Uncertainty in Measurement (GUM), Supplement 1 applying the
MC method and ISO/FDIS 11929 (at present in preparation) dealing with the characteristic limits. As an illustration, a net
count rate measurand, being the difference of a gross and a background count rate, is treated theoretically and numerically.
More complex examples deal with the wipe test for surface contamination and with a linear multi-channel spectrum
unfolding.

INTRODUCTION

The recognition and detection of ionising radiation
are indispensable basic prerequisites for radiation
protection. For this purpose, the standard series ISO
11929 provides characteristic limits, i.e. the decision
threshold, the detection limit and the confidence
limits, for a diversity of application fields. The
decision threshold allows a decision to be made for a
measurement on whether or not, for instance, radi-
ation of a possibly radioactive sample is present.
The detection limit allows a decision to be made on
whether or not the measurement procedure intended
for application to the measurement meets the
requirements to be fulfilled and is, therefore, appro-
priate for the measurement purpose. Confidence
limits — recently called the limits of a coverage inter-
val, also in the present paper — enclose with a speci-
fied probability the true value of the measurand, the
physical quantity to be measured. In addition, the
best estimate of the measurand and the associated
standard uncertainty are of interest, together as the
measurement result.

Because of recent developments in metrology con-
cerning measurement uncertainty, laid down in the
ISO Guide to the Expression of Uncertainty in
Measurement (GUM)(1), the standard series ISO
11929 urgently needs revision. Therefore, a new draft
ISO/FDIS 11929(2) has been elaborated by the
authors of the present paper and others on the basis of
GUM, but using Bayesian statistics (BS)(3–12) and the
Bayesian theory of measurement uncertainty(14–16).
This theory provides the Bayesian foundation of
GUM. Moreover, the draft (2) is based on the defi-
nitions of the characteristic limits(17), the standard pro-
posal(18), the introducing article(19) and the precursory
ISO 11929-7(20). It unifies and should replace the old
parts of ISO 11929 and will be applicable not only to
a large variety of particular measurements of ionising
radiation but also, in analogy, to other measurement
procedures.

Meanwhile, a supplement(21) to GUM(1) has been
published, dealing comprehensively with the treat-
ment of measurement uncertainty using the Monte
Carlo (MC) method in complex measurement evalu-
ations. This gave the incentive for writing the present
paper, which is intended to be taken as the
corresponding supplement to ISO/FDIS 11929(2).*Corresponding author: michel@zsr.uni-hannover.de
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The paper is also essentially founded on BS and will
serve as a bridge between documents(2,21).

The MC methods provided by the GUM sup-
plement(21) and by the present paper should not
only be applied in complex cases but also in simpler
cases — such as the wipe test (see Appendix 3) —
where only some few input quantities using non-
Gaussian distributions or strongly non-linear model
equations are involved. Moreover, these MC
methods can be used for independently testing
whether or not the methods offered by GUM and
ISO/FDIS 11929 are sufficient for the particular
measurements in question, for instance, in low-level
measurements. However, the MC methods do not
always have to be applied because of the central
limit theorem of probability theory. This theorem
states that the measurand can in most cases be
assessed, at least approximately, by using a Gaussian
normal distribution if the measurand depends suffi-
ciently linearly on several input quantities in the
data region of interest. The parameters of the
Gaussian distribution can be obtained already by
the methods provided by GUM. More details are
given in the following.

Applying BS together with the principle of
maximum (information) entropy (PME)(10 – 15) in the
present paper makes it possible to take also into
account non-statistical information, for instance, of
uncertain physical quantities and influences, which
do not behave randomly in repeated or counting
measurements and thus cannot be treated by con-
ventional, frequency-based statistics (CS). BS and
CS are both based on the probability theory but
differ essentially in their understanding of the prob-
ability Pr(A) of a random event A. In CS, the prob-
ability is the limit of the relative frequency with
which the event happens randomly in measurements
repeated independently more and more frequently
under identical nominal conditions. In contrast, the
probability in BS expresses the degree of belief,
based on the information actually available, that the
event will happen in a measurement before the
measurement is carried out. An example is the prob-
ability 1/2 reasonably assigned to each side of a coin
before tossing the coin. This meaning of probability
is in fact the classical one introduced by Bernoulli
and Laplace. BS and CS are asymptotically equival-
ent on the same base of data, conditions, assump-
tions and other information if both statistics are
applicable. For a comprehensive comparison of BS
and CS in repeated measurements, see Lira and
Wöger(22).

There are two quite distinct statistical levels when
MC is applied to determine the characteristic limits.
They should be strictly separated in mind. On the
one hand, there is a metrological level where
measurement data and other information are evalu-
ated statistically and probability-based statements

are obtained on the measurand, including those on
uncertainty and the characteristic limits. Here, BS
has to be used because non-randomly behaving
quantities cannot be treated by CS. On the other
hand, there is a MC level. The MC method as
applied in the supplement(21) and in the present
paper merely serves as a convenient tool for more
easily calculating complex integrals numerically, but
can never change the Bayesian understanding of a
probability distribution. The MC sampling does not
simulate any repeated measurements, although it
appears similar to them with an arbitrarily large
number of repetitions and without non-random
influences. Either BS or CS can therefore be applied
on the MC level, but strictly separated from all the
Bayesian interpretations, otherwise on the metrologi-
cal level.

The present paper is written mainly for experts,
tutors and developers of procedures and programs in
the fields of characteristic limits and MC. The aims
and basic tools of the study are stated in the follow-
ing two sections. Several probability distributions are
first formally introduced. In particular, these are dis-
tributions of the measurand Y, which depends by a
model equation Y ¼ GðX1;X2; . . .Þ on input quan-
tities Xi, with their joint distribution also needed to
perform a distribution propagation from Xi to Y.
Then the best estimate of the measurand with the
associated standard uncertainy and the characteristic
limits to be determined are defined by means of inte-
grals, i.e. moments and quantiles, of the distri-
butions of Y. The way to establish distributions in
general from available information by using the
PME or other methods such as the Bayes theorem is
shown in a further section. The point of view is then
changed from the metrological level to the MC level
in order to apply the MC method. The next two sec-
tions describe how to draw MC samples from the
distributions and how to calculate the integrals by
MC. The last section and, more deeply, Appendix 4
deal with the MC-induced uncertainty of the inte-
gral calculation. As an illustration, a counting
measurement and a linear spectrum unfolding are
treated theoretically in Appendix 1 as typical, still
relatively simple examples of ionising-radiation
measurements. Numerical results obtained by the
Gaussian approach according to ISO/FDIS 11929(2)

and by the analytical and MC approaches to the
counting measurement and to the wipe test are com-
pared in Appendices 2 and 3, respectively. Typical
problems involved in the MC application are also
treated in Appendix 3.

For the definitions of the metrological terms used,
see references (1,2,21,23), and for the statistical
terms and symbols, see, e.g. references (24–26).
There are problems in this respect between BS and
CS, between BS with and without PME and in nomen-
clature and notation. To avoid misunderstandings in
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such cases, it is tried, if necessary, to clearly and
exactly define the concepts in question where they
are introduced and to call and denote them as
closely to other usages as suitable and possible. A
glossary of some important terms and symbols is
given in Appendix 5.

DISTRIBUTIONS

Denotations

In the following if not otherwise stated, an upper-
case letter, say Z, is used to denote some random
variable and (preferably corresponding) lower-case
letters z or z are used for values of the random vari-
able. The distinct meanings of the random variable
and its values should always be kept in mind.
Boldface symbols are used for sets of related entities.
For instance, a set of quantities or values fv1,v2, . . .g
is abbreviated by the corresponding symbol v used
as a column matrix (v1,v2, . . .)`. The due v-space
volume element dv is applied in multiple integrals.
The probability density, also called the distribution,
of a random variable Z is denoted by fZ(z j a) (simi-
larly to DIN 13303-1(25) and to the symbol fz j ag
for a set of elements z with a property described by
a). The set a summarily represents all the infor-
mation taken into account, i.e. data, conditions,
assumptions, functional relations and other relevant
information given or obtained from measurements
and other sources. The data can also comprise
values of other random variables as statistical infor-
mation, e.g. in the form V ¼ v or, shorter, v alone
for a random variable V with its value v. Other
information may be non-statistical such as func-
tional relations. Particular fixed values of a random
variable are marked by suitable affixes. As in
common practice and in ISO/FDIS 11929(2), the
general symbol f is used for probability densities and
F for the corresponding distribution functions, for
instance, FZ(z j a) ¼ Pr(Z � z j a) ¼

Ð
21
z fZ(z j a)dz

or, conversely, fZ(z j a) ¼ dFZ(z j a)/dz. The joint
distribution of a set Z of random variables Zi with
values z is denoted by fZ(z j a). Instead of f and F,
the symbols g and G, respectively, are used in the
GUM supplement(21). Notice that the random vari-
able as a subscript of the distribution symbols f and
F is not dropped(25). This avoids mistakes, which can
be caused easily by the less informative, but simpler,
naked symbols usually preferred in the literature.

A random variable Z, called an estimator, is
assigned to every particular physical quantity
involved. Its values z (or z) are estimates of the phys-
ical quantity. Only for brevity and convenience, the
quantity and its estimator are denoted by the same
symbol Z if suitable and not otherwise stated,
although they are not identical and should be distin-
guished as physical and mathematical entities,

respectively. In this way, for instance, ‘estimator R of
the count rate’ can be shortened to ‘count rate R’,
although the count rate is not a random variable if
the count rate is taken as a physical quantity with a
fixed true value to be determined.

The distribution f ¼ fZ(z j a) of the estimator Z
represents the probability of an estimate z to be the
true value of the physical quantity on the infor-
mation a. The estimate z is therefore also taken as a
possible true value if f . 0. An already known or
assumed f used as a computation input is called a
prior. It is stressed again that in BS applied here on
the metrological level, a distribution such as f in
most cases is a probability density in a degree-of-
belief sense and represents the information about the
physical quantity actually being present and taken
into account. Such a distribution is not that of
values which occur in measurements repeated many
times under identical or similar nominal conditions
as in CS. However, CS frequency distributions may
also be involved, for instance, the Poisson distri-
bution in counting measurements.

Distribution propagation

Estimator sets X and Y of the involved physical input
and output quantities are considered with values j
and h, respectively. Their joint distributions based
on information sets a and a0, respectively, meet the
product rule

fX;Yðj;h j a; a0Þ ¼ fYðh jX ¼ j; a0ÞfXðj j aÞ ð1Þ

This rule follows from the general probability
product rule Pr(A > B) ¼ Pr(A j B)Pr(B) for random
events (sets) A and B. In many cases, the set a
mainly contains the input data information and the
set a0 the relations between X and Y, i.e. the model
information, and further, updating data. The first
distribution on the right-hand side of equation (1) is
therefore sometimes called the model prior and the
second one the (data) prior or input distribution,
although the different kinds of information cannot
always be strictly separated. The output distribution
of Y, also called the posterior, on the combined
information a,a0 is the distribution of very interest.
It is obtained from equation (1) by a maginalisation:

fYðh j a; a0Þ ¼
ð

fX;Yðj;h j a; a0Þdj

¼
ð

fYðh jX ¼ j; a0Þ fXðj j aÞdj
ð2Þ

Some important formulas needed are derived in
the following from the posterior by application,
together with equation (1), to some particular model
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priors fYðh jX ¼ j; a0Þ in the integrand. These distri-
butions represent the model relations, which form a0
and have to be observed between the involved phys-
ical quantities (and the corresponding estimators).
Model relations Mi(X, Y) ¼ 0 or �0 are considered.
They may depend also on data contained in the
information sets. The model priors are expressed by
Cid(Mi) for Mi( j,h) ¼ 0 or CiH(Mi) for Mi � 0
with suitable constants Ci. If there are several model
relations to be observed in a particular case, then the
corresponding priors must be multiplied to form the
total model prior. The considered priors are based
on the Heaviside unit step function H(t) ¼ 1 (t � 0)
and H(t) ¼ 0 (t , 0). Its derivative d(t) ¼ dH(t)/dt
is called the Dirac delta function. It has the proper-
ties d(t) ¼ 0 (t = 0) and

Ð1

�1
dðtÞgðtÞdt ¼ gð0Þ for

any function g(t).
In order to define the characteristic limits in

measurements of ionising radiation, a non-negative
particular physical quantity Y, called the measurand,
is considered that quantifies the radiation effect of
interest and assumes the true value 0 if the effect is
not present. This measurand is the very quantity for
which the true value and the characteristic limits are
to be determined. An estimator, also denoted by Y,
with values y (or h) is assigned to the measurand.

The measurand Y depends on several input quan-
tities X. This is expressed by the model equation
M ¼ Y 2 G(X) ¼ 0 or Y ¼ G(X). The input distri-
bution fX(j j a) together with the model prior
fY ðy jX ¼ j; y ¼ GðjÞÞ ¼ C dðy� GðjÞÞ, where the
information a0 is formed by the relation y ¼ G( j),
then yields according to equations (1) and (2) the
posterior

fY ðy j aÞ ¼
ð
dðy� GðjÞÞ fXðj j aÞdj ;

FY ðy j aÞ ¼
ð

Hðy� GðjÞÞ fXðj j aÞdj
ð3Þ

C ¼ 1 is obtained by normalisation. The model
function G may also depend on the information a,
for instance, on the uncertainties involved in spec-
trum unfolding (see Appendix 1). Instead of G, the
symbol f is used in GUM(1,21). In many cases, the
posterior fY(y ja) turns out to be at least approxi-
mately a Gaussian normal distribution. Equation (3)
is called the Markov formula. It is the well-known,
basic equation of distribution propagation(21) or
transformation from X to Y in the probability
theory.

Particular estimates y of the measurand Y may be
negative when obtained from measurement data or
generated by MC, but only the estimates y � 0 are
possible true values of the non-negative measurand.
This knowledge is in most cases not taken into
account in a and, thus, requires an update. This is

done by introducing the additional model relation
M0 ¼ Y � 0 and the corresponding model prior fY(y
j y � 0) ¼ C H(y), which has to be multiplied with
the delta function in equation (3) to form the total
model prior. But H(y) does not depend on j and
can thus be drawn to the front of the integral. In
this way, the posterior

fY ðy j a; y � 0Þ ¼ HðyÞ fY ðy j aÞ
I0

;

I0 ¼
ð1

0
fY ðy j aÞdy ¼ 1� FY ð0 j aÞ

ð4Þ

of the possible true measurand values on the com-
bined information easily follows from equation (3).
The normalisation constant C ¼ 1/I0 is
obtained. See also the paragraph between equations
(15) and (16) for a derivation of equation (4) from
the PME.

Other formulas, which are better suited for MC
application than equation (3), follow from equations
(3) and (4), for example,

FY ðy j a; y � 0Þ ¼ 1
I0

ð
R

fXðj j aÞdj;

R ¼ fj j 0 � GðjÞ � yg;

I0 ¼
ð

GðjÞ�0
fXðj j aÞdj:

ð5Þ

Information modification

It may be asked why the condition y � 0 is not
taken as included in the information set a from the
beginning but is later added to form fY(y ja, y � 0).
The reason is that a may contain a primary estimate
y0 of the measurand and the associated standard
uncertainty u(y0), both obtained from an evaluation
of measurements according to GUM(1) where the
condition y � 0 is not taken into account and y0
may become negative. Therefore, the condition must
subsequently be observed. The model function G
can be used to determine the primary estimate y0 ¼
G(x0) from the available data x0 of the input quan-
tities X. A primary estimate y0 is also needed for the
decision on whether or not the radiation effect in
question, quantified by the measurand, is recognised
as present, for instance, the radiation of a measured,
possibly radioactive sample. This decision has to be
made by comparing y0 with the decision threshold
y* (see the following section).

Unfortunately, not all the necessary elements of
the set a are available in the situation where the
decision threshold and the detection limit are to be
determined. For instance, the result of a gross-effect
radiation measurement is missing in this case, since
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the decision threshold and the detection limit should
be known before the first gross-effect measurement is
carried out. A suitable true measurand value ỹ � 0
is then assumed for an indirect compensation, and a
is replaced by ã( ỹ). This function transforms the
present information for a chosen ỹ. At least a
reasonable approximation must be available, but it is
not easy to establish this function in practice. The
function ã( ỹ) is a generalisation of the uncertainty
function ũ( ỹ) introduced in ISO/FDIS 11929(2). If
the gross-effect value, say x1, of a radiation measure-
ment is not available, y is replaced by ỹ in the model
equation y ¼ G(x) and this equation is solved for x1
resulting in x1 ¼ L( ỹ, x2, . . .), which is then used to
form ã( ỹ) and the distribution fY(y j ã( ỹ)) in analogy
to a and fY(y ja), respectively. For instance, a ¼ fy0,
u(y0)g in ISO/FDIS 11929(2) becomes ã( ỹ) ¼ fỹ,
ũ( ỹ)g. For more details, see the basic example of a
counting measurement in Appendix 1. Not only x1
but also the whole x can be influenced by ỹ as in
the case of spectrum unfolding also shown in
Appendix 1.

It is often sufficient to use as an approximation of
the function ã( ỹ) an interpolation of the sets aj
belonging to the results yj from some previous
measurements of the same kind carried out on
samples with differing activities, but in other respects
as far as possible under similar conditions. One of
these measurements can be a background or blank
measurement with yj ¼ 0. The measurement cur-
rently carried out can be taken as another one with
yj ¼ y0. The values yj serve as the interpolation
abscissas of the variable ỹ.

INTEGRALS REPRESENTING THE BEST
ESTIMATE, UNCERTAINTY AND
CHARACTERISTIC LIMITS

In many cases, the functional values of the estimator
distributions cannot explicitly be calculated for par-
ticular argument values y, since analytical formulas
or algorithms required for solving the complicated
integrals in equation (3) are often missing. Only
argument values can be obtained by MC sampling
from a preceding probability analysis according to
references (14,15,21). This is the reason why the fol-
lowing integrals of the distributions then need to be
calculated by MC and not more easily by the
Simpson or similar numeric integration methods(27).

The best estimate of the measurand, the standard
uncertainty associated with this best estimate, and
the lower and upper limits of the coverage interval
are defined in the following by means of moments
and quantiles of the distributions fY(y ja) and fY(y j
a, y � 0). The definitions of the decision threshold
and the detection limit are based similarly on the
distribution fY(y j ã( ỹ)) with different assumed true
measurand values ỹ. The p-quantile of a distribution

fZ(z) is the upper integral limit q in the equationÐ q
�1

fZðzÞdz ¼ FZðqÞ ¼ PrðZ � qÞ ¼ p with the given
probability p. The particular probabilities a and b of
the errors of the first and second kind, respectively,
and the coverage probability (1 2 g) used in the fol-
lowing have to be specified. For I0, see equation (4).
For illustrations of the distributions and the charac-
teristic limits, see Figures 1 and 2.

The best estimate by of the measurand Y is the
expectation of the distribution fY(y ja, y � 0):

by ¼ EðY j a; y � 0Þ ¼ I1

I0
;

I1 ¼
ð1

0
y fY ðy j aÞdy:

ð6Þ

The standard uncertainty u(by) of the measurand
associated with by is the standard deviation of the dis-
tribution fY(y ja, y � 0). It reads

uðbyÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðY j a; y � 0Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2

I0
� by2

r
;

I2 ¼
ð1

0
y2 fY ðy j aÞdy:

ð7Þ

The lower limit y/ of the coverage interval is the

Figure 1. Illustration of the best estimate by (expectation of
distribution (2)) of a non-negative measurand Y with the
associated standard uncertainty uðbyÞ (standard deviation),
and the limits y/ and y. of the coverage interval that covers
the true measurand value with the probability 1 2 g. The
dashed line represents the distribution (1) of the possible
true measurand values y, based on the available
information a (from the measurement evaluated according
to GUM(1)). By adding the condition y � 0 to a, the
distribution (1) is truncated at y ¼ 0 and renormalised to

form the boldface distribution (2). This leads to y/ � 0.
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(g/2)-quantile of the distribution fY ðy j a; y � 0Þ:

FY ðy/ j a; y � 0Þ ¼ g

2
¼ I3

I0
;

I3 ¼
ðy/

0
fY ðy j aÞdy ¼ FY ðy/ j aÞ � FY ð0 j aÞ:

ð8Þ

The upper limit y. of the coverage interval is the (1 2
g/2)-quantile of the distribution fY(y ja, y � 0):

1� FY ðy. j a; y � 0Þ ¼ g

2
¼ I4

I0
;

I4 ¼
ð1

y.
fY ðy j aÞdy ¼ 1� FY ðy. j aÞ:

ð9Þ

Although the integrals of equations (4) and (6)–
(9) refer to the distribution fY(y ja, y � 0), only the
function fY(y ja) is needed.

The measurement uncertainty u(y) associated with
an arbitrary estimate y is in general given by

uðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EððY � yÞ2Þ

q
(14,15) where E((Y 2 y)2) is the

non-central second-order moment with respect to y.
Accordingly, u(y) assumes with y ¼ E(Y ) its
minimum value, the standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðYÞ

p
of

Y, also called the standard uncertainty [23 (2.30)].
The expectation E(Y ) is therefore taken as the ‘best’
estimate by of the measurand Y and, together with
the associated standard uncertainty u(by), as the
measurement result [23 (2.9)].

The coverage interval [21 (3.12), 23 (2.36)]
between the limits according to equations (8) and (9)
contains the true value of the measurand with the
specified coverage probability (1 2 g) [21 (3.13), 23
(2.37)]. It is identical with the (Bayesian) confidence
interval of the references cited, but it is merely analo-
gous to the confidence interval in CS. The limits of
the coverage interval are sometimes also called the
credible limits. The coverage interval as defined
above is probabilistically symmetric [21 (3.15)] as in
common practice and ISO/FDIS 11929(2) for his-
torical and practical demands. Other stipulations are
possible. If, for instance, by in seldom cases happens
not to be contained in the coverage interval, then
the median m, defined by FY(m j a, y � 0) ¼ 1/2
and, thus, always contained in the coverage interval,
may be taken as a reasonable estimate of the mea-
surand, but with a larger associated uncertainty

uðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EððY �mÞ2Þ

q
. uðbyÞ. If the true value 0 of

the measurand is required to be always contained in
the coverage interval, then y/ ¼ 0 and y. defined by
FY ðy. j a; y � 0Þ ¼ 1� g could be stipulated.
However the coverage interval is stipulated, it does
not enlarge the knowledge of the measurand since
all the information available and taken into account
is already represented by the distribution fY(y ja,
y � 0).

The decision threshold y* is the (1 2 a)-quantile
of the distribution fY ðy jeaðey ¼ 0ÞÞ for the assumed
true value ey ¼ 0 of the measurand:

1� FY ðy* jeaðey ¼ 0ÞÞ

¼ I5 ¼
ð1

y*
fY ðy jeaðey ¼ 0ÞÞdy ¼ a: ð10Þ

The detection limit y] is the assumed true value of
the measurand if the decision threshold y* is the b-
quantile of the distribution fY ðy j ~að~y ¼ y]ÞÞ:

FY ðy* jeaðey ¼ y]ÞÞ

¼ I6 ¼
ðy*

�1

fY ðy jeaðey ¼ y]ÞÞdy ¼ b:
ð11Þ

Equations (10) and (11) also read 1 2 P(0) ¼ a and
P(y]) ¼ b, respectively, with the function
PðeyÞ ¼ FY ðy* jeaðeyÞÞ ¼ Ð y*

�1
fY ðy jeaðeyÞÞdy. Possibly,

equation (11) has no unique solution y] or even no
solution at all. Therefore, a more general mathemat-
ical definition of the detection limit is needed and
could read as follows: the detection limit is the

Figure 2. Illustration of the decision threshold y* and the
detection limit y] of a non-negative measurand Y. The
figure shows the distributions fY ðy jeaðeyÞÞ of possible
measurand estimates y from a measurement if the true
values (expectations and parameter values)ey ¼ 0 and ey ¼ y] of Y are assumed. If y0 . y* for a
particular primary estimate y0 from a measurement, then it
is decided that the radiation effect quantified by Y is
recognised as present. The areas a and b below the
distributions on the right-hand and left-hand side of the
abscissa y* are the probabilities of the errors of the first
and second kind, respectively. The area a ‘covers’ a piece

of the line for ey ¼ y].
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minimum true value y] for which the suitability con-
dition PðeyÞ � b is met for all ey � y]. If there is no
solution, then y] ¼ 1 is set. PðeyÞ is assumed to be a
continuous function.

The decision threshold y* and the detection limit
y] should be known before a measurement is carried
out on a sample to be tested for ionising radiation.
If y0 . y* for a primary estimate y0 from a measure-
ment, then it is decided that the radiation effect in
question, quantified by the measurand Y, is recog-
nised as present. This decision is wrong and is called
an error of the first kind if the radiation effect is
actually absent. This case is assumed by choosing
the true measurand value ey ¼ 0. Its probability a is
expressed by equation (10) (see Figure 2). ISO/
FDIS 11929(2) requires to determine the best esti-
mate by, the associated standard uncertainty uðbyÞ,
and the limits y/ and y. of the coverage interval
only if y0 . y*.

Notice that the condition y � 0 is not involved in
the definitions of the decision threshold y* and the
detection limit y] according to equations (10) and
(11), respectively, since y0, which has to be compared
with y*, is taken as obtained directly from the
measurement data evaluation according to GUM(1)

where the condition is ignored. Therefore, y* must
also be defined without the condition. This applies
also to y] since it depends on y*. See also paragraph
(a) of the concluding section.

If y] � yr with a guideline value yr specified for
scientific, legal or other demands, then it is decided
that the measurement procedure is suitable for the
intended measurement purpose. Assume a present
radiation effect by any true measurand value ey . 0.
Then the decision that the radiation effect is recog-
nised as absent—because of y0 � y*— is wrong and
called an error of the second kind. The function PðeyÞ
defined below equation (11) is the probability of this
wrong decision. It must meet the suitability con-
dition PðeyÞ � b for all ey � y] (see Figure 2) if y0 .
y*, i.e. in the case of the decision that the radiation
effect is recognised as present. For ey ¼ yr � y], in
particular,

I7 ¼ PðyrÞ ¼
ðy*

�1

fY ðy jeaðey ¼ yrÞÞdy � b: ð12Þ

Vice versa, if PðeyÞ � b for all ey � yr, then y] � yr
since y] is a minimum value with respect to the suit-
ability condition. Hence, it follows that the detection
limit y] is not needed if only the suitability decision
has to be made with a given yr. If PðeyÞ is known to
decrease monotonously, then the condition P(yr) �
b is easier to test than y] � yr and is sufficient for
the suitability decision.

Since ey is an assumed true measurand value, the
expectation of the distribution fY ðy jeaðeyÞÞ should

meet the condition

EðY jeaðeyÞÞ ¼ ey ð13Þ

in analogy to equation (6). Moreover,
VarðY jeaðeyÞÞ ¼ eu2ðeyÞ is the squared uncertainty
function euðeyÞ used in ISO/FDIS 11929(2) and
similar to equation (7).

The definitions given in equations (6)–(11) are in
accordance with ISO/FDIS 11929(2). But in this
document, Gaussian distributions are used for fY(y j
a) and fY ðy jeaðeyÞÞ. These distributions follow from
the PME (see the next section) if, as an approxi-
mation and according to GUM(1), only their expec-
tations y0 and ey and standard deviations
uðy0Þ and euðeyÞ, respectively, are taken into account
as constraints and form the information sets
a ¼ fy0; uðy0Þg and eaðeyÞ ¼ fey;euðeyÞg.
ESTABLISHING DISTRIBUTIONS

PME and Bayes and expansion theorems

For the application of the MC method, the input
distribution fX( j j a) according to equation (3) has
to be formed. This task is described in detail in the
GUM supplement(21) and in the Bayesian theory of
measurement uncertainty(14,15). A short introduction
thus will be sufficient here.

The distribution f ¼ fZ(z j a) of any random vari-
ables Z can in general be obtained from actually
available information a by using the PME(10 – 15) or
other means such as the Bayes theorem or the expan-
sion theorem of the probability theory. The PME is a
fundamental, first principle in BS and in the uncer-
tainty theory. It plays a part similar to other famous
variational principles in physics like that of extremal
action. Its importance should therefore not be
underestimated. The Bayes and expansion theorems
can be applied to include known frequency or par-
ameter distributions, respectively. If possible and
suitable, the mentioned methods can be applied
alternatively, in combination, or in succession. If
two of them are alternatively applicable in a particu-
lar case, then their results f must be identical pro-
vided that the same information is in analogy and
correctly taken into account.

The PME consists in choosing as f ¼ fZ(z j a) the
most likely distribution by taking into account rel-
evant information available at present as so-called
constraints and maximising the entropy

S ¼ �
ð

R
f ln

f
f0

dz ¼ max ð14Þ

by applying a variational method. R is the region of
all possible values z of Z and f0 ¼ f0,Z(z) is the prior,
the distribution of Z based on the information

MC DETERMINATION OF CHARACTERISTIC LIMITS

175



already known and included before the new infor-
mation a, represented by R and the constraints,
became available. If nothing was known before, then
the prior is uniform. Only this case is assumed by
the PME application of the GUM supplement [21
(6.3.2)]. The distribution f vanishes outside R. It is
stressed once more that this solution of the PME
depends essentially on the—nearly always incom-
plete—information available and taken into account.
There is thus no ‘true’ distribution in BS.

If only the region R is known, then f is a uniform
distribution in R. If constraints E(gi(Z)) ¼ di have to
be met with given functions gi(Z) and data di, then
the maximisation can be carried out by the
Lagrange method (see any textbook on variational
methods, e.g. reference(28)) and results for z [ R in

fZðz j aÞ ¼ C f0;ZðzÞ exp �
X

i

migiðzÞ
 !

: ð15Þ

The normalisation constant C and the coefficients
mi, also called the Lagrange multipliers, have to be
determined from the normalisation condition of a
distribution and the constraints.

If there are no constraints, then f ¼ Cf0 inside R
and f ¼ 0 outside R. This leads to equation (4) with
Z ¼ Y; z ¼ y; R ¼ fy j y � 0g; f ¼ fY(y ja, y � 0)
and the prior f0 ¼ fY(y ja), which is taken as already
known and updated by equation (4) for the con-
dition y � 0.

If, in particular, Z ¼ X and only the expectation
EX ¼ x and the non-singular uncertainty (covari-
ance) matrix Ux associated with x are known and
taken into account such that a ¼ fx, Uxg and, more-
over, the prior is uniform and R is the whole
n-dimensional X-space, then a Gaussian distribution
f is obtained:

fXðj j x;UxÞ

¼
exp � 1

2 ðj� xÞ`U�1
x ðj� xÞ

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞndet Ux

p : ð16Þ

In this case, fY (y ja) according to equation (3) is
also a Gaussian distribution if G(X) is a linear
function.

The also important Bayes theorem in the form

fZðz j vÞ fVðvÞ ¼ fVðv j zÞ f1;ZðzÞ ð17Þ

can be applied if the likelihood, a (frequency) distri-
bution fV(v j z ) of random variables V with values v,
being parts of the information a, and the prior f1 ¼
f1,Z(z ) are available from previous measurements,
experience or reasonable assumptions. But relative
frequencies of such a distribution mean probability in

the CS sense, whereas the BS sense is needed in the
Bayes theorem. Both senses must therefore be ident-
ified. This will be, however, not of great importance
in practice because of the asymptotic equivalence of
BS and CS. Since v is fixed, fV(v) is a constant 1/C.
The subscript 1 in equation (17) only indicates that
the prior f1 differs from f and f0 in the PME accord-
ing to equations (14) and (15). Hence, follows

fZðz j vÞ ¼ C fVðv j zÞ f1;ZðzÞ: ð18Þ

This distribution can be taken as the final f if no
further information such as R or constraints has to
be included. Otherwise, it must be used as the prior
f0 of the PME.

An example of the likelihood is the Poisson fre-
quency distribution fV(v j z ) ¼ fN(n j @) with the
counting variable V ¼ N, its recorded value v ¼ n
and the expectation E(N ) ¼ @t. Here, z ¼ @ is the
possible true value of the count rate Z ¼ R to be
determined and t is the duration of the measure-
ment. The distribution fZ(z j v) ¼ fR(@ j n) becomes a
gamma distribution if, for instance, the prior
f1,Z(z ) ¼ fR(@) ¼ H(@) is applied since @ � 0 (see
also equation (4) and the first example in Appendix
1). Although fN(n j @) ¼ Pr(N ¼ n jR ¼ @) is not a
probability density but a probability function since
N is a discrete random variable, this does not matter
in the Bayes theorem.

The expansion theorem, also called the theorem of
total probability, reads

f2;ZðzÞ ¼
ð

fZðz jwÞ fWðwÞdw: ð19Þ

Its output distribution f2 can be taken as the final f
if the distributions of the integrand, which depend
on values w of parameters W, are given, for instance,
as results from the PME or as priors. fW(w) can also
express a distribution of weights assigned to the
values w. The expansion theorem can be obtained in
a way similar to equations (1) and (2).

Additional remarks

There are cases where an update has to be made for
new, additional information of the measurand. This
can be done in several ways depending on the kind
of information:

(a) The model equations can be refined by intro-
ducing new input quantities Xi. e.g. influence
quantities, if the information refers to these
quantities.

(b) The PME can be applied if the new infor-
mation refers to the region R of the possible
true values of the measurand or to the
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constraints. Then, the old distribution f has to
be used as the prior f0.

(c) A distribution of a quantity Z, e.g. a prior,
which will be more reasonable than a first
assumed one such as a uniform prior over an
interval, can be established by Bayesian updat-
ing(12) if a pool of comparable data zk from
previous, similar measurements is available.
The improved distribution is then obtained,
for instance, by fitting a suitably assumed
function to the data(29). These data, ordered
by magnitude and renumbered as z(k), can
also be used like the MC samples y(k) in
equation (20). A suitably assumed inverse dis-
tribution function fitted to the M points
(k/M, z(k)) can be advantageous to the MC
sampling treated in the following section.

(d) If a new prior, possibly improved according to
(c), of the measurand or of a parameter or a
distribution of weights have to be taken into
account, then either the product rule accord-
ing to equation (1) or the Bayes or expansion
theorems according to equations (18) and (19)
can be applied.

If the n input components Xi of X are known to
be independent random variables or nothing is
known about their mutual dependence, then
fXðj j aÞ ¼

Qn
i¼1 fXi ðji j aiÞ with a ¼ fa1; . . . ; ang. In

multi-channel spectrum unfolding, all the fXi ðji j aiÞ
are gamma distributions of the count rates Xi ¼ Ri
and ji ¼ @i with ai ¼ ni (see the example of spectrum
unfolding in Appendix 1).

According to the central limit theorem of prob-
ability theory, fY(y ja) becomes in most cases, but
with some exceptions, at least when standardised by
the substitution Y 0 ¼ ðY � EðYÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðYÞ

p
, an

approximation of a (standardised) Gaussian distri-
bution even if fX(j j a) is non-Gaussian. But the
expectations x and the uncertainty matrix Ux of X
must exist and none of the n input quantities Xi
should strongly dominate by uncertainty. There
should be more than only some few dimensions n,
but n need not necessarily be a large number. But if n
tends to infinity as in multi-channel spectrum unfold-
ing, then the expectation and the variance of Y
should remain finite. Moreover, the model
function G(X) must be sufficiently linear in a
neighbourhood of x determined by the condition
ðj� xÞ`U�1

x ðj� xÞ ,� n. If all these conditions are
(nearly) met and, accordingly, fY ðy j aÞ is (approxi-
mately) a Gaussian distribution, ISO/FDIS 11929
can be applied directly. Then, an MC calculation is
not necessary. This is an important result especially
for spectrum unfolding. There are other, similar limit
theorems making possible analytical or, for instance,
iterative numerical approaches to multi-dimensional
problems competing with MC methods(30).

Nevertheless, one should be cautious. If fY ðy j aÞ
can indeed be well approximated by a Gaussian
distribution, this applies mainly to the bulk of the
distribution, but not necessarily to the tails that
play a prominent part in the integrals I4 to I7 since
a, b, and g are commonly specified as small
numbers. The same applies to the integral I3 ifby� uðbyÞ. If simple approximate arithmetic
expressions for the distribution tails are known,
then the contributions of the tails to the men-
tioned integrals can possibly be better calculated
analytically than by MC.

There are cases where the PME seems to have no
solution(31). Let, for instance, an estimate x (expec-
tation) and the associated standard uncertainty u(x)
(standard deviation) be given for a measurand X
known to be valued in some interval between a and
b . a. If x is not contained in the interval or u(x) .
b 2 a, then, indeed, there is no solution from the
PME for the distribution f ¼ fX ðj j x; uðxÞ; a; bÞ to be
determined. What does this mean? It merely indicates
that there is something wrong with the information.
The information is contradictory or badly inter-
preted. This should give an incentive to carefully
inspect the measurement and the data evaluation in
order to find the reason for the inconsistency. The
first question should be: How are x and u(x) obtained
from what information? Suppose, for instance, that x
and u(x) are determined from measurement data vi
according to GUM(1) as the arithmetic mean and the
empirical standard deviation (type A evaluation of
measurement uncertainty [23 (2.28)]), respectively.
The interval information a and b has not yet been
used. Thus, x and u(x) do not belong to the distri-
bution f but to a distribution f0 ¼ fX ðj j x; uðxÞÞ!
GUM does not provide this distribution but f0 can be
reconstructed by the PME with a uniform prior and
turns out to be the Gaussian distribution
f0 ¼ expð�ðj� xÞ2=ð2u2ðxÞÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pu2ðxÞ

p
. This dis-

tribution must now be subsequently updated for the
additional interval information to form the final dis-
tribution f. This can again be done by the PME but f0
must now act as the prior since it represents the
knowledge already taken into account. Then,
equation (14) has to be solved for f with Z ¼ X ; z ¼ j
and R ¼ fj j a � j � bg and with the normalisation
condition only. Equation (15), where the sum now
vanishes, yields f ¼ Cf0 for j [ R and f ¼ 0 else-
where. Thus, f0 is truncated at a and b and
renormalised to form f. There is always a solution f.
Naturally with f, the ‘best’ estimate now turns
out to be bx ¼ EðXÞ= x with a � bx � b and
uðbxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXÞ
p

� minðuðxÞ; b� aÞ. All possible
coverage intervals are contained in the interval
between a and b. The prior f0 introduced in the PME
here reasonably eliminates the difficulty. The example
treated here is similar to subsequently taking into
account the condition y � 0 for a non-negative
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measurand Y as is shown below equation (15). In this
case, a ¼ 0 and b ¼1.

MC DATA SAMPLING

The point of view now changes from the fundamen-
tals on the metrological level to the numerics on the
MC level.

With the MC method, a very large number N of
values xk, called the samples, are drawn from the dis-
tribution fX(x j a) and values yk ¼ G(xk) are calcu-
lated (k ¼ 1, . . . , N ). Although this MC data
sampling is already comprehensively described in the
GUM supplement(21), some additional, more
general aspects are treated here, which could be
important for the calculation of integrals in the
present paper. These aspects concern uncertainty
contributions induced by the MC method and the
importance sampling random walk(32,33), which offers
a possibility of reducing considerably the number N
of samples needed.

In many cases, some or all components of X are
independent of the other ones and each have a
strictly increasing, continuous distribution function
FXi ðjÞ. Then, with a random number u drawn by
means of a random-number generator from a
uniform distribution between 0 and 1, the u-quantile
x satisfying FXi ðxÞ ¼ u is a sample of Xi. In the fol-
lowing, u is called a standard random number. The
sequence of all standard random numbers u used
during an MC run is called a history. A shortcoming
of the general sampling method just described is
that the inverted distribution function must be avail-
able, for instance, from a pre-computed table, in
order to calculate the u-quantiles rapidly enough.
Other methods of generating samples, e.g. the accep-
tance–rejection method, are described in refer-
ences(33,34) and elsewhere.

Distribution function

For the determination of the characteristic limits, an
approximation eFY ðy j aÞ of the distribution function
FY ðy j aÞ is useful and is prepared as follows. After
the sampling, if necessary, the N values yk are sorted
by magnitude and renumbered by y(k) such that
yðkÞ � yðkþ1Þ. Only these N values y(k) are stored as
the results of the MC run and as the abscissas of the
distribution function. This way of storing the data is
called the sample-storing mode in the following.
After the MC run has been carried out, the corre-
sponding ordinate values eFY ðyðkÞ j aÞ ¼ k=N are
then set and, in addition, eFY ðy j aÞ ¼ 0 for y , yð1Þ

and eFY ðy j aÞ ¼ 1 for y . y(N ). For y(k) , y , y(kþ1),
a linear interpolation is applied. An interpolated

functional value is

eFY ðy j aÞ¼
1
N

kþ y� yðkÞ

yðkþ1Þ � yðkÞ

� �
ðyðkÞ,y,yðkþ1ÞÞ

ð20Þ

In this way, the approximation eFY ðy j aÞ becomes a
continuous, piecewise linear, and between y(1)

and y(N ) strictly increasing function. Obviously,
the functional values need not be stored since they
can easily be determined after the MC run if
necessary.

During the MC run, several counters of interest,
denoted by N(conditions j parameters), are incre-
mented if yk meets the conditions. For instance,
N(yk � h) means the number of samples yk � h. If
suitably chosen abscissas hj ( j ¼ 1, . . . ,M�N ) with
hj , hjþ1 are introduced, then the M counters nj ¼
N(yk � hj) represent something like an accumulated
‘multi-channel spectrum’. Then, eFY ðhj j aÞ ¼ nj=N
can serve as an alternative approximation of the dis-
tribution function defined similar to that described
above. The advantages of this multi-channel mode
are that only the M�N number pairs (hj, nj) need
to be stored and sorting can be avoided, but larger
MC-induced uncertainties must possibly be accepted
as a shortcoming. Now, an interpolated functional
value is

eFY ðy j aÞ ¼
nj � ðh jþ1 � yÞ þ n jþ1 � ðy� hjÞ

N � ðh jþ1 � hjÞ

ðhj , y , h jþ1Þ:
ð21Þ

The multi-channel mode is especially suited to the
determination of a quantile q by using a few appro-
priately chosen approximations hj of q. The MC-
induced uncertainties associated with nj and q in this
case can be obtained according to Appendix 4.

The sample-storing and multi-channel modes
can be combined. If, for instance, eFY ðy j aÞ is
needed only in a known, possibly small range
a , y , b, then eFY ða j aÞ ¼ Nðyk � aÞ=N andeFY ðb j aÞ ¼ 1�Nðyk � bÞ=N can be set and only
the samples falling into this range have to be sorted
by magnitude and treated as described above.

General integral determination

In the following, I strictly denotes an integral and J
its estimate or approximation. An integral

I ¼
ð

R
LðxÞdx ð22Þ

K. WEISE ET AL.

178



of any function L(x) over a fixed region R can be
calculated by the MC method in the following way.

Bounds ai and bi are first chosen for each of the n
components xi of x such that ai � xi � bi for all
samples x [ R. The bounds ai and bi should be as
large and as small, respectively, as possible such that
the n-dimensional cuboid defined by the bounds sur-
rounds the region R as closely as possible.
V ¼

Qn
i¼1ðbi � aiÞ is the volume of the cuboid. If R

is infinite, it must be previously suitably transformed
to become a finite region. The substitution
xi ¼ vi=ð1� v2

i Þ, for instance, transforms an arbi-
trary region R of x to a finite region of v since there
is a vi with j vi j , 1 for every Xi. Another example is
the substitution xi ¼ 2ln (vi). For every xi � 0, there
is a vi with 0 , vi � 1.

Then, n standard random numbers ui are drawn,
i.e. 0 � ui � 1 ði ¼ 1; . . . ; nÞ, and the components
xi ¼ ai þ ðbi � aiÞui of a sample xk are formed. This
is repeated N times for k ¼ 1, . . . ,N. Here, N is a
very large number of samples xk generated in this
way. If xk [ R, then L(xk) is calculated. Otherwise,
L(xk) ¼ 0 is set. With the functional values L(xk),
the (arithmetic) mean L and the variance s2ðLÞ of
the mean are determined:

J ¼ VL ¼ V
N

XN

k¼1

LðxkÞ

¼ V � 1
N

XN

k¼1

ðLðxkÞ � L0Þ þ L0

 !
;

ð23Þ

u2
MCðJÞ ¼ V 2s2ðLÞ ¼ V2

NðN � 1Þ
XN

k¼1

ðLðxkÞ � LÞ2

¼ V2

N � 1
1
N

XN

k¼1

ðLðxkÞ � L0Þ2 � ðL� L0Þ2
 !

ð24Þ

uMC(J ) is the MC-induced standard uncertainty of
the integral I associated with the estimate J. The
sample number N must be chosen large enough so
that uMC(J ) can be neglected when compared with
other uncertainty components, or it must also be
taken into account. The last expressions in equations
(23) and (24) are better suited for numeric calcu-
lations. This Kahan summation reduces the influences
of rounding errors. L0 is an arbitrary, but best-poss-
ible approximation of L. The denominator N 2 1 in
equation (24) applies in CS. In BS, it has to be
replaced by N 2 3(22). But 21 or 23 can be neg-
lected since N should be very large, typically 106.
This shows the asymptotical equivalence of BS and
CS in the present case.

If J is taken as a random variable, an estimator of
I, then E(J ) ¼I and

VarðJÞ ¼ 1
N

V
ð

R
L2ðxÞdx� I2

� �
: ð25Þ

uMC
2 (J ) according to equation (24) is an estimate of

Var(J ). Equation (25) means Var(J ) ¼ const/N. But
the MC procedure is only meaningful if the integral
of L2(x) exists. Moreover, this integral should be as
small as possible. Its existence and reduction can
also be achieved by a skilful transformation such
that the integrand becomes uniform as far as poss-
ible. In the case of I ¼

Ð 1
0 dx=

ffiffiffi
x
p

, for instance, the
integral of L2(x) ¼ 1/x does not exist. But the sub-
stitution x ¼ v2 leads to I ¼ 2

Ð 1
0 dv and even to

Var(J ) ¼ 0.

Importance sampling random walk

In many cases, a relatively small connected subre-
gion S , R mainly contributes to the integral I
according to equation (22) if L(x) nearly vanishes
outside S. Then it could be more practical to choose
the samples xk in such a way that their number
density asymptotically for N!1 becomes pro-
portional to an available or suitably chosen prob-
ability density f (x). By first setting L(x) ¼ g(x)f (x),
this can be done as follows whereby S need not be
specified exactly.

Beginning with an arbitrary sample x1 [ S, a
sample x0 is drawn from a uniform distribution in a
small neighbourhood of xk, for instance, in a cuboid
centred at this sample. x0 is accepted as a new
sample xkþ1 if x0 [ R and v ¼ f (x0)/f (xk) � 1 or, if
v , 1, another random number u yields u , v.
Otherwise, x0 is rejected and xk is retained as xkþ1.
Then,

J ¼ g ¼ 1
N

XN

k¼1

gðxkÞ ð26Þ

is an estimate of I. The procedure described is called
the importance sampling random walk(32,33). The
random walk automatically stays preferably inside
the subregion S. This can reduce considerably the
number of samples needed if otherwise many
samples far outside S would have had to be gener-
ated but could not contribute much to the integral.

A formula for the standard uncertainty uMC(J )
can be derived by analogy from equation (23) to
equation (24). With VL replaced by g and with
h(x) ¼ g2(x)f (x) and h̄ similar to equation (26),

u2
MCðJÞ ¼

Vh� J2

N � 1
ð27Þ
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results. Obviously, u2
MCðJÞ � c=N. But the constant

c could be rather large. This requires a correspond-
ingly large N to obtain a sufficiently small uMC(J ).
This is due to the restricted choice of x0 in the neigh-
bourhood of xk. The neighbourhoods at the steps
may arbitrarily be formed, but preferably in such a
way that nearly half of the samples x0 are rejected. It
may be sufficient at every step to vary only one or a
few randomly or cyclically chosen components of xk
in order to obtain x0.

The importance sampling can be adequate and
advantageous for quantiles as can easily be seen in
the following. Every quantile can be written as a frac-
tion Q ¼ I(Q)/I(R) � 1 of two integrals I of the same
integrand but different integration regions R and Q
, R. Here, R is the region of all possible samples xk
and Q is the subregion of all the samples xk with
yk ¼ G(xk) contributing to the quantile. Instead of
drawing N samples xk from R, a considerably smaller
number N0 , N of samples is drawn by importance
sampling mainly from the essential subregion S , R
and used to determine I(R) that acts as the normali-
sation integral. Those of the samples yielding values
yk ¼ G(xk) belonging to the quantile are used for
I(Q). This means that the quantile Q ¼ I(Q)/I(R) is
approximated by I(Q > S)/I(S) since samples xk
outside S barely contribute to the integrals.

MC CALCULATION OF THE INTEGRALS

Obviously, there are three types of integrals. (A) I0,
I1, I2 and I7 have fixed integral limits and can be
directly calculated by MC with suitably sampled
values of the integration variable. (B) In I3, I4 and
I5, one of the integral limits has to be determined.
(C) I6 also has fixed integral limits, but a parameter
of the integrand has to be calculated and the MC-
induced uncertainty of one of the integral limits has
to be taken into account (also for I7). Types B and
C can also be numerically determined by MC but
require additional considerations.

Preliminary approximations of fY (y ja) and of the
integrals can be obtained according to refer-
ences(2,17 – 19) by using a Gaussian distribution (see
the two last but one paragraphs of the preceding
section dealing with establishing input distributions).

If the characteristic limits or preliminary approxi-
mations of them are available, then MC approxi-
mations of the integrals I0 and I3 to I7 useful for a
test are:

I0 �
Nðyk � 0 j aÞ

N
; ð28Þ

I3

I0
¼ g

2
� Nð0 � yk < y/ j aÞ

Nðyk � 0 j aÞ ; ð29Þ

I4

I0
¼ g

2
� Nðyk , y. j aÞ

Nðyk � 0 j aÞ ð30Þ

since samples with y/ � yk � y. belong to the cover-
age interval.

I5 ¼ a � Nðyk , y* jeaðey ¼ 0ÞÞ
N

ð31Þ

since samples yk . y* falsely let the radiation effect
be recognised as present although the assumed true
value of the measurand is ey ¼ 0 (error of the first
kind).

I6 ¼ b � Nðyk � y* jeaðey ¼ y]ÞÞ
N

; ð32Þ

I7 �
Nðyk � y* jeaðey ¼ yrÞÞ

N
� b ð33Þ

since samples yk � y* falsely let the radiation effect
be recognised as absent, although the assumed true
value of the measurand is ey . 0 (error of the second
kind).

A simple, but possibly not always economic
method of determining the characteristic limits con-
sists of several MC runs repeatedly carried out with
the same(!) history of standard random numbers but
varied approximations of the characteristic limits
until equations (29)–(32) are fulfilled sufficiently
well. After each run, the equations are tested and
the approximations are cautiously changed with
respect to the test results by a dialogue with the
computer program. The decision threshold y* must
already be available before the detection limit y] can
be determined. The calculations should finally be
followed by the determination of the MC-induced
uncertainties associated with the obtained results
according to the next section and Appendix 4.

Sometimes it is essential to calculate MC approxi-
mations J(h0) and J(h1) of any quantity I with
slightly different parameter values h0 and h1,
respectively, by using the same history of standard
random numbers either simultaneously during the
same MC run or in successive runs. Many random-
number generators offer this mode. Random devi-
ations then nearly cancel out in the difference
J(h1) 2 J(h0)(35). Distinctly generated histories can
be taken as independent and should be used if a cor-
relation, for instance, between J(h0) and J(h1) has to
be avoided (see Appendix 4).

Type-A integrals

Estimates J0 ¼ N(yk � 0 j a)/N and J1 and J2 of the
type-A integrals I0, I1 and I2, respectively, are
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obtained with m ¼ 0, 1, 2 by the (arithmetic) mean
values:

Jm ¼ ymH ¼ 1
N

XN

k¼1

ym
k HðykÞ: ð34Þ

Then,

by � J1

J0
; u2ðbyÞ � J2

J0
� J1

J0

� �2

: ð35Þ

The type-A integrals should always be accumulated
during the same MC run since N(yk � 0 j a) for I0
and the sums for I1 and I2 can easily be updated
when a new sample yk is drawn. The samples yk
need not be sorted by magnitude. Within CS on the
MC level, the expressions given in equation (35) forby and u2ðbyÞ are, at least asymptotically for N!1,
unbiased estimates of the expectation and the var-
iance, respectively, of the distribution fY(y ja, y � 0).
A possible bias is neglected since N is a very large
number, typically 106 (see text below equation (24)).
The uncertainty uðbyÞ should not be confused with
the MC-induced uncertainty uMCðbyÞ that expresses
how accurately by is calculated by MC (see the next
section and Appendix 4). The integral I7 can be
obtained in a similar manner to I0. See also the fol-
lowing subsection.

Type-B integrals

The type-B integrals I3 and I4 have the same inte-
grand parameters represented by a as the type-A
integrals I0, I1 and I2. All these integrals can there-
fore be determined from the data of the same MC
run, whereas the integral I5 and the type-A integral
I7 require their own MC run because eaðeyÞ differs
from a. The type-B integrals should preferably be
calculated after the MC run has been carried out.
They can be written in the generalised form

IðhÞ ¼
ðh

c
f ðxÞdx ¼ 1 ð36Þ

where c and 1 are given constants and h is to be cal-
culated. f (x) is a distribution and I(h) is a monoto-
nously increasing function. Let J(h) be the
approximation of I(h) obtained from the MC run.
To solve equation (36), first search for the maximum
and minimum h values, denoted by h0 and h1,
respectively, such that h0 , h1 and J(h0) � 1 and
J(h1) � 1 and apply a linear interpolation. This
yields

h ¼ h0 þ
ð1� Jðh0ÞÞ � ðh1 � h0Þ

Jðh1Þ � Jðh0Þ
ð37Þ

A higher order interpolation need not be carried out
if the number N of MC samples is sufficiently large.
Equation (37) can be applied to both the sample-
storing mode and the multi-channel mode. In the
latter mode it could happen, although it is unlikely,
that several adjacent channels have the same con-
tents J(h) ¼ 1. Then the mean h of these channels
should be taken as the solution h. The estimates
J(h0) and J(h1) of the integrals should be calculated
by using the same history of standard random
numbers (see above in the present section and also
the next section and Appendix 4). Otherwise, the
MC-induced uncertainty of the denominator in
equation (37) would become too large(35).
Preliminary estimates for an iterative application of
equation (37) may be determined with a reduced N
if computing time has to be saved.

The distribution function approximation eFY ðy j aÞ
is involved to form the function J(h) as in the type-
B integrals I3 and I4. If the solution h is known to
be located in the interval between available values a
and b . a, then only the samples in this interval
need to be sorted by magnitude and the numbers
N(yk , a j a) or N(yk . b j a) must be counted. This
is sufficient to determine the distribution function
approximation in the interval.

Type-C integrals

Type-C integrals like I6 have the form

IðhÞ ¼
ðb

a
f ðx;hÞdx ¼ 1 ð38Þ

that has to be solved for the function parameter h.
The integral limits a and b and the integral value 1
are given constants. With approximate values h0 and
h1 for h, an improved approximation h is obtained
similar to equation (37) with

JðhjÞ ¼
Nða � xk � b jhjÞ

N
ð39Þ

for j ¼ 0, 1. The relation symbols � or , depend on
whether or not a and b belong to the integration
interval.

MC-INDUCED UNCERTAINTY

An integral I can be calculated by MC as accurately
as required by choosing a sufficiently large sample
number N. That is, the MC-induced uncertainty
uMCðJÞ 	 1=

ffiffiffiffiffi
N
p

associated with an MC estimate J
of I can be made arbitrarily small. But for every
additional significant leading decimal digit of J, the
number N and, thus, the computing time must be
multiplied by 100. For computing economy, N
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should therefore be chosen as small as reasonable.
But how many samples are needed? And what about
the MC-induced uncertainty uMC(q) associated with
a quantile estimate q ¼ J/J0 as a fraction of integral
estimates J and J0? Here, the correlation beween J
and J0 must also be taken into account when these
estimates are calculated, again with the same history
of standard random numbers. Such questions are
analysed in Appendix 4. It is assumed that in most
cases in practice, an accuracy of two or three signifi-
cant leading digits will suffice for the characteristic
limits. This means that an associated MC-induced
relative uncertainty ,0.01 (1%) is assumed to be
required. To satisfy such a requirement, only upper
bounds of the MC-induced uncertainties as small as
possible need to be determined.

An easy way to assess MC-induced uncertainties
consists in independently repeating an MC run n
times with different histories and looking for how
many digits of any particular result z in question do
not change. More accurately, the MC-induced uncer-
tainty associated with z as one of the individual out-
comes zk of the n runs is

uMCðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n� 1

Xn
k¼1

ðzk � zÞ2
s

ð40Þ

where z is the arithmetic mean of the zk. If z is taken
as the final result z, then the right-hand side of
equation (40) must be divided by

ffiffiffi
n
p

. A deeper
insight into the matter can be obtained by the con-
siderations in Appendix 4. An assessment of MC-
induced uncertainties in advance could also be
advantageous for MC programs under development.

CONCLUSIONS

The characteristic limits, estimates and associated
uncertainties studied in the present paper are needed
for the recognition, detection and quantification of
ionising radiation and allow decisions to be made
for radiation protection purposes. They are quite
generally defined on BS as close as possible and
reasonable to traditional, common practice and are
calculated by using MC methods. This enables them
to be applied even to complex and critical cases in
radiation measurement. Moreover, the MC approach
to the characteristic limits makes possible to go a
step beyond the present state of standardisation laid
down in ISO/FDIS 11929(2) since distributions
rather than uncertainties can be propagated. It is
thus more comprehensive and promising.

ISO/FDIS 11929(2) mainly uses Gaussian prob-
ability distributions. More general distributions
representing all available, relevant knowledge of the
radiation measurand in question can be obtained,
e.g. by the PME, but require the application of MC.

Sometimes, the distributions can be approximated
by Gaussian ones if there is a parameter t, for
instance, the measurement duration, which can be
made sufficiently large to improve the approxi-
mation. The convergence to the Gaussian distri-
butions can in general be rather slow, only
proportional to 1=

ffiffiffi
t
p

. There are remarkable differ-
ences in Appendix 3 between the results of the
Gaussian and the MC approaches. This comes first
from the intentional choice of the example such that
the differences become significant and obvious.
Nevertheless, this also shows that MC application
can be necessary and advantageous in practice.

The question of whether or not the definitions of
the characteristic limits are the best possible or most
reasonable ones was not studied but should be dis-
cussed in the future to achieve common agreement.
Some other definitions have already been considered.
Two examples are:

(a) If y0 . y*, then it is decided that the radiation
effect in question is recognised as present.
Instead, the condition by . y** is proposed
where y** is defined similar to the decision
threshold y* according to equation (10) but
with the distribution fY ðy jeaðey ¼ 0ÞÞ replaced
by fY ðy jeaðey ¼ 0Þ; y � 0Þ. Such a definition
could be possible but is it an improvement?
Since y0 � by and also y* � y**, this question
cannot easily be answered. Moreover, the pro-
posal requires more computing effort.

(b) If y] � yr, then it is decided that the measure-
ment procedure is suitable. But the detection
limit y] needs much iterative MC compu-
tation. As shown in the text below equation
(12), there is an equivalent condition P(yr) �
b, which can be more easily tested since only a
simple type-A integral has to be calculated by
MC. The detection limit is not needed in this
case.

Finally, because of often arising misunderstand-
ings, it must be stressed once more, that every distri-
bution used in the present work has to be
interpreted in the Bayesian sense as representing just
the information taken into account of a quantity in
question. This also applies by a new interpretation
to a frequency distribution involved in equations
(17) and (18), e.g. the Poisson distribution. If the
amount of information changes, then the distri-
bution and all the results obtained from this distri-
bution also change, including the characteristic
limits. Naturally, additional information can, for
instance, reduce the coverage interval. Accordingly,
the matter of characteristic limits is not a matter of
right or wrong but a matter of knowledge, approxi-
mation, reasonableness and expenditure as often in
physics.
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APPENDIX 1: EXAMPLES OF THEORETICAL
MC PREPARATION

Every MC application to a measurement requires a
preceding theoretical preparation on the metrologi-
cal level. Since counting measurement and spectrum
unfolding play a dominant part in measurement of
ionising radiation, they are chosen as examples to
illustrate such preparations.

Counting measurement

Let N be a Poisson-distributed random counting
variable with the parameter @t where @ . 0 is the
count rate parameter and the constant t is the dur-
ation of a counting measurement with n events
recorded. The random variable N follows a fre-
quency distribution with the probability function
(likelihood; not a density, see text below equation
(18))

fNðn j @Þ ¼ PrðN ¼ n jR ¼ @Þ

¼ ð@tÞne�@t

n!
: ðA:1Þ

In BS, @ is taken as the value of a non-negative
random variable R assigned to the count rate, acting

here as the measurand to be determined. In order to
obtain the distribution fRð@ j nÞ of R, the Bayes
theorem is applied. It reads

fRð@ j nÞ fNðnÞ ¼ fNðn j@Þ fRð@Þ: ðA:2Þ

Here, fN(n) is a constant since n is given and fR(@) is
the prior of R, the distribution of R representing the
information about R before the counting measure-
ment is carried out. Mathematically, fR(@) should be
proportional to 1/@ because of a scale invariance
with respect to the time(17). But in the physical
reality, there are often disregarded influences that
could better be taken into account as a whole by
setting fRð@Þ 	 Hð@tÞ, i.e. uniform for @ � 0(17). The
influences are caused, for instance, by dead-time and
mean-life effects, pile-up of pulses, instrumental
instabilities or by the choice of the duration t such
that at least one event should be expected. With
equation (A.1) and the uniform prior of R after a
normalisation, equation (A.2) now yields

fRð@ j nÞ ¼
Hð@tÞ � t ð@tÞne�@t

Gðnþ 1Þ : ðA:3Þ

Accordingly, the count rate R with the value @
follows a gamma distribution with the expectation
EðR j nÞ ¼ r ¼ ðnþ 1Þ=t and the variance
VarðR j nÞ ¼ r=t ¼ ðnþ 1Þ=t2. The gamma function
G(n þ 1) ¼ n! is used in equation (A.3) since n in
general is not a natural number when the decision
threshold and the detection limit are to be deter-
mined. The distribution can be transformed by
the substitution R ¼ 2(1/t)ln Q into the finite
region of Q with values q (0 , q � 1) leading to
fQðq j nÞ ¼ ð� ln qÞn=Gðnþ 1Þ. The standardised
gamma distribution converges for n!1 and fixed t
in distribution to the standardised Gaussian normal
distribution(17). If, moreover, t!1 but r remains
finite, then the gamma distribution tends via
the Gaussian distribution to the delta distribution
d(@ 2 r). The distribution function of R is an incom-
plete gamma function(27,34,36). Convergence in distri-
bution means—if some conditions are met—not
only the pointwise convergence of a distribution to a
limiting one but also that any intergral of a function
formed with respect to the distribution converges to
the corresponding integral with respect to the limit-
ing distribution(17).

A sample @ from the gamma distribution accord-
ing to equation (A.3) can be formed with n þ 1 stan-
dard random numbers ui . 0 ði ¼ 1; . . . ; nþ 1Þ(21):

@ ¼ � 1
t

ln
Ynþ1

i¼1

ui

 !
: ðA:4Þ

This way of sampling can be modified if n is not a

K. WEISE ET AL.

184

www.inference.phy.cam.ac.uk&sol;mackay&sol;itila
www.inference.phy.cam.ac.uk&sol;mackay&sol;itila


natural number: Let n ¼ m þ l where m is a
natural number and 0 , l, 1. For any integral with
the gamma distribution involved, the obvious
identity

ð
LðjÞ jne�j

Gðnþ 1Þ dj ¼
ð
ðLðjÞ jlÞ jme�j

Gðmþ 1Þ dj

� Gðmþ 1Þ
Gðmþ lþ 1Þ

ðA:5Þ

applies. Thus, equation (A.4) can be used with m
instead of n and L( j)jl instead of the arbitrary
function L( j). A sufficient approximation of the
constant in equation (A.5) is

Gðmþ1Þ
Gðmþlþ1Þ¼ðmþ1Þ�l


 1þlð1�lÞ
2ðmþ1Þþ

lð1�l2Þð2�3lÞ
24ðmþ1Þ2

þ���
 ! ðA:6Þ

based on reference(34). The sampling described is not
very practical for large n. Importance sampling then
could be more suitable with fQ(q j n) since only
values q � 0 can contribute considerably to an inte-
gral. For sampling from the gamma and Gaussian
distributions, see also references(27,37).

The following subscripts g and 0 refer to indepen-
dent counting radiation measurements of the gross
and the background effects, respectively. The
model Y ¼ GðXÞ ¼ X1 � X2 ¼ Rg � R0 is intro-
duced where Y ¼ Rn is the net count rate and X1 ¼
Rg and X2 ¼ R0. The set a consists of the recorded
counts ng and n0 and of the measurement durations
tg and t0, i.e. a ¼ fng; n0; tg; t0g. The due rate values
are x1 ¼ EðRg j ngÞ ¼ rg ¼ ðng þ 1Þ=tg and
x2 ¼ EðR0 j n0Þ ¼ r0 ¼ ðn0 þ 1Þ=t0. A primary esti-
mate of the measurand is y0 ¼ x1 � x2 ¼ rg � r0.
According to equation (3), all this yields

fY ðy j aÞ ¼
ð
dðy� j1 þ j2Þ


 fX1ðj1 j ng; tgÞ fX2ðj2 j n0; t0Þdj1dj2

¼
ð1

0
fX1ðyþ j j ng; tgÞ fX2ðj j n0; t0Þdj:

ðA:7Þ

This distribution is thus obtained by folding two
gamma distributions. It also becomes a Gaussian
distribution for large ng; n0; tg; t0 when standardised,
since folding two Gaussian distributions again yields
such a distribution.

In order to obtain eaðeyÞ if ng is missing before the
gross-effect measurement is carried out, the model
equation ey ¼ x1 � x2 ¼ rg � r0 is solved for
x1 ¼ rg ¼ eyþ r0. This leads to eaðeyÞ and to
fY ðy jeaðeyÞÞ by replacing ng in a and in equation
(A.7) by ðeyþ r0Þtg � 1. The gamma distribution of
X1 ¼ Rg accordingly changes but the new value ng is
no longer necessarily a natural number. The model
Y ¼ Rn ¼ Rg 2 R0 just described is the simplest
possible non-trivial model in measurement of ionis-
ing radiation.

When, for instance, a surface activity concen-
tration is to be measured by the wipe test (see
Appendix 3), additional input quantities are
involved as, among others, the wiping efficiency X3
with possible true values between c0 and
c1 ð0 , c0 , c1 � 1Þ. If nothing more is known of
X3, then, according to the PME,
fX3ðj j c0; c1Þ ¼ Hðj� c0ÞHðc1 � jÞ=ðc1 � c0Þ is a
uniform distribution between c0 and c1. Moreover,
a ¼ fng; n0; tg; t0; c0; c1g. With the non-linear model
equation Y ¼ GðXÞ ¼ ðX1 � X2Þ=X3, the distri-
bution

fY ðy j aÞ ¼
ð
d y� j1 � j2

j3

� �
fX1ðj1 j ng; tgÞ


 fX2ðj2 j n0; t0Þ fX3ðj3 j c0; c1Þdj
ðA:8Þ

is obtained according to equation (3). It differs
substancially from the Gaussian distribution if
c0 is a small value. Its expectation is
EðY j aÞ ¼ ðrg � r0Þ 
 lnðc1=c0Þ=ðc1 � c0Þ. This expec-
tation should not be confused with the best estimateby ¼ EðY j a; y � 0Þ of the measurand according to
equation (6).eaðeyÞ is obtained again by solving the model
equation ey ¼ ðx1 � x2Þ=x3 ¼ ðrg � r0Þ=x3 for
x1 ¼ rg ¼ eyx3 þ r0. This leads to eaðeyÞ and
fY ðy jeaðeyÞÞ by replacing ng in a and equation (A.8)
by ðeyx3 þ r0Þtg � 1. The expectation EðY jeaðeyÞÞ ¼eyx3 � lnðc1=c0Þ=ðc1 � c0Þ of this distribution should
equal ey according to equation (13). This condition
finally yields x3 ¼ ðc1 � c0Þ= lnðc1=c0Þ.

Linear spectrum unfolding

A measured multi-channel spectrum with ni events
recorded in channel i ¼ 1, . . . , m is to be unfolded. To
each of the channels, a random variable Xi ¼ Ri is
assigned which follows a gamma distribution
fXi ðji j niÞ with ji ¼ @i as in equation (A.3) of the pre-
ceding example and with ri ¼ (ni þ 1)/t. These input
variables X are independent according to the PME if
no further information about them is available. Let
a ¼ fn; tg. Then, fXðj j aÞ ¼

Qm
i¼1 fXi ðji j niÞ.
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The set a can alternatively be expressed with xi ¼ ri
by the column matrix a ¼ x ¼ r of the expectations
of the input variables X or by the diagonal uncer-
tainty (covariance) matrix a ¼ UxðxÞ ¼ diagðxÞ=t,
which is thus introduced as a function of x but with
the fixed given data x of the immediate spectrum
measurement inserted.

The measurand Y ¼ Y1 in question is the intensity
of a particular spectral line of interest with the
known shape c1(q) of the spectral density. q is the
variable assigned to the channel number, for
instance, the time or the particle energy, q ¼ qi for
channel i with the width Dqi. For the unfolding, the
spectrum is expanded by this line and a suitable
number n 2 1 (n , m) of background spectral-
density components with shapes ckðqÞ ðk ¼ 2; . . . ; nÞ
including other lines, which may interfere. This is
done by fitting a column matrix z to x with

zi ¼
Xn
k¼1

ckðqiÞDqi � yk or z ¼ Ay ðA:9Þ

by minimising x2 ¼ ðx� zÞ`U�1
x ðxÞðx� zÞ. The

constant matrix A ¼ ðAikÞ ¼ ðckðqiÞDqiÞ is called
the spectrometer response matrix. The result of the
fit is(2).

y ¼ Bx; B ¼ UyA`U�1
x ðxÞ;

Uy ¼ ðA`U�1
x ðxÞAÞ

�1:
ðA:10Þ

Equation (A.10) is now used to form the linear
model equation Y ¼ GðXÞ ¼ BX. Like Ux(x), the
matrix B is taken as constant with the known fixed
value x. Then, y is also fixed, and it is analogous to
the primary estimate y0. According to equation (3),
the distribution of Y ¼ Y1 then reads (h replaces y
to avoid confusion with y)

fY ðh j aÞ ¼
ð
dðh� ðBjÞ1Þ

Ym
i¼1

fXi ðji j niÞdji:

ðA:11Þ

This is nearly a Gaussian distribution with the
expectation and, identically, the primary estimate
EðY j aÞ ¼ y0 ¼ y1 ¼ ðBxÞ1 and the variance
u2ðy0Þ ¼ ðUyÞ11 since y0 and u(y0) remain finite if m
!1 as is shown in the following. In the case of a
large m, it is therefore not necessary to use MC, the
application of ISO/FDIS 11929(2) is sufficient. Let
the same spectrum be measured again with more
and more channels but a fixed t. Then, essentially,
Dqi, A and x are 	1/m and the diagonal matrix
Ux

21(x) is 	m. Accordingly, each of the n 
 m
elements of A`U�1

x ðxÞ is a product of a value 	1/m
times a value 	m and, thus, independent of m.

Similarly, each of the n 
 n elements of
A`U�1

x ðxÞ � A is a sum of m products of a value
independent of m times a value 	1/m and is, there-
fore, also independent of m. Hence it follows that Uy
is also essentially independent of m and remains
finite. The same applies to the n 
 m elements of B.
Each of the n elements of y ¼ Bx is then a sum of m
products of a value independent of m times a value
	1/m and is thus independent of m and remains
finite.

The model and the data conform if the chi-square
criterion j min x2 � ðm� nÞ j � k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm� nÞ

p
is met.

k is an agreed factor preferably valued between 1
and 3. The applied minimum chi-square (also called
the generalised least-squares) fit method turns out to
be the only adjustment method satisfying the metro-
logical requirements of a unique solution and a con-
sistent uncertainty analysis in accordance with
GUM(1). Information conservation is a particular
case of consistency. This feature and the fit method
follow from the inherent symmetry of the suitably
linearised model and of the information given by the
measurement data and the associated uncertain-
ties(38). Additional information not taken into
account by GUM, e.g. on non-negativity of quan-
tities, can break the symmetry.

In order to finally obtain the set eaðeyÞ, the estimate
y1 of the measurand Y1 in question is replaced by ey
leading to y0 ¼ ðey; y2; . . .Þ` and z0 ¼ Ay0. This z0
is then used to replace x in equation (A.10)
yielding eaðeyÞ ¼ UxðAy0Þ ¼ diagðAy0Þ=t and
U0y ¼ ðA`U�1

x ðAy0ÞAÞÞ�1. The distribution
fY ðh jeaðeyÞÞ then follows from equation (A.11) by
accordingly replacing B by B0 ¼ U0yA`U�1

x ðAy0Þ. See
also the next paragraph below equation (A.7) for the
input gamma distributions changed accordingly.

APPENDIX 2: ILLUSTRATIVE NUMERIC
EXAMPLE

To illustrate the distinctions between the usual
Gaussian approach to the characteristic limits
according to ISO/FDIS 11929(2) and the analytical
and MC approaches, the already studied simplest
realistic model Y ¼ X1 2 X2 in measurement of
ionising radiation is chosen where the measurand Y
is the difference of two count rates. Moreover, simple
data cases as may occur in extremely low-level
measurements are considered to make the distinc-
tions quite obvious. With the Gaussian and
analytical approaches, the data results are stated
with five digits on the right of the decimal point so
that they can also be used for testing programs
under development. With the MC approach,
however, the results obtained from 106 samples can
be stated with an accuracy of two or three significant
digits only.
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Model, input data and first results

In the simple model Y ¼ Rg 2 R0 under consider-
ation, the radiation measurand Y ¼ Rn is the net
count rate, the difference between the gross count
rate X1 ¼ Rg and the background count rate X2 ¼
R0. Counts ng ¼ n0 ¼ n and preselected measure-
ment durations tg ¼ t0 ¼ t are considered as the
input data a. The probabilities a ¼ b ¼ g ¼ 0:05 are
specified. When t is enlarged in the following in
order to make a measurement more accurate, then
the count rates to be measured do not change.
Therefore, the count rate values rg ¼ r0 ¼ r are kept
constant. Accordingly, n is also enlarged but is in
general no longer a natural number.

With the estimates r ¼ (n þ 1)/t (with subscripts g
or 0) and the associated squared standard uncertain-
ties u2ðrÞ ¼ r=t of the input count rates, the primary
estimate y0 ¼ rg � r0 ¼ 0 of the measurand and the
associated standard uncertainty
uðy0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðrgÞ þ u2ðr0Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rg=tg þ r0=t0

p
¼

ffiffiffiffiffiffiffiffiffi
2r=t

p
are first obtained. Since ng is not available when the
decision threshold and the detection limit are to be
determined, the measurand value ey is assumed and
ng is replaced in the present case by teyþ n0 becauseey replaces y0 ¼ ðng þ 1Þ=tg � ðn0 þ 1Þ=t0. Notice
that ng does not change its given value n0 by this
replacement if ey ¼ 0.

Gaussian approach according to ISO/FDIS 11929

The application of ISO/FDIS 11929 (Section 6)(2) is
quite easy. fY(y ja) is a Gaussian distribution with
expectation y0 and variance u2(y0). The best estimateby and the associated standard uncertainty u(by) of the
measurand Y follow from equations (33) and (34) of
reference(2) with r ¼ 2 corresponding to n ¼ 1 if t ¼
1 (the arbitrary time unit is dropped for convenience;
r ¼ (n þ 1)/t is used instead of r ¼ n/t in reference(2)

to make the results of the different approaches
comparable):

by¼y0þ
uðy0Þwðy0=uðy0ÞÞ

v
¼uðy0Þ

ffiffiffiffi
2
p

r
¼1:59577ffiffi

t
p ;

uðbyÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðy0Þ�ðby�y0Þbyq

¼uðy0Þ
ffiffiffiffiffiffiffiffiffiffiffi
1� 2

p

r
¼1:20562ffiffi

t
p :

ðA:12Þ

Here, wðxÞ¼ expð�x2=2Þ=
ffiffiffiffiffiffi
2p
p

is the standardised
Gaussian distribution, F(x) is its distribution func-
tion and v ¼ F(y0/u(y0)) ¼ 1/2. Moreover, kp is the
p-quantile with F(kp) ¼ p. The limits y/ and y. of
the coverage interval are obtained from equations
(29) to (31) of reference(2). The results are p ¼
0.4875; q ¼ 0.9875; kp ¼ 20.03134; kq ¼ 2.24140

and

y/¼y0�kpuðy0Þ¼
0:06268ffiffi

t
p ;

y.¼y0þkquðy0Þ¼
4:48281ffiffi

t
p :

ðA:13Þ

The computation of the decision threshold y* and
the detection limit y] requires the uncertainty func-
tion euðeyÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðeyþr0Þ=tgþr0=t0
p

according to
equation (14) of reference(2) (with w ¼ x3 ¼ 1, x4 ¼
0 and vanishing associated uncertainties). According
to equation (13), the assumed true value ey and the
squared uncertainty function eu2ðeyÞ are the expec-
tation and the variance, respectively, of fY ðy jeaðeyÞÞ
which is here a Gaussian distribution. Here,eu2ðeyÞ¼ c0þc1eyþc2ey2 with c0¼ r0ð1=tgþ1=t0Þ¼4=t;
c1¼1=tg¼1=t; c2 ¼ 0. Equations (21), (22), (27) and
(28) of reference(2) then yield the following with k ¼
k12a ¼ k12b ¼ 1.64485 since a ¼ b (see also
Figure 2 and Figure A1):

y*¼k1�aeuð0Þ¼k
ffiffiffiffiffi
c0
p ¼3:28971ffiffi

t
p ;

y]¼y*þk1�beuðy]Þ¼2y*þk2c1

1�k2c2
¼2y*þk2

t

¼6:57942ffiffi
t
p þ2:70554

t
:

ðA:14Þ

This means y]=ð2y*Þ¼1þy*=8¼1þ0:41121=
ffiffi
t
p

(see Figure A2) and y] ¼ 9.28496 for t ¼ 1 and y] ¼
0.68500 for t ¼ 100. See also the following MC
approach subsection and Appendix 3 where the
results of the Gaussian approach are marked by the
subscript G.

Analytical approach

Only the case n ¼ 1 and t ¼ 1 is treated with the
analytical approach. Otherwise, the complicated
integrals involved would require an unreasonable
amount of computation. The gamma distribution
according to equation (A.3) then reads fR(@ j 1) ¼
H(@) @ e2@. By using this distribution in the folding
integral of equation (A.7), the integration can be
carried out and yields fY(y ja) ¼ (1 þ j y j )e2 j y j/4.
The corresponding Gaussian distribution with the
same expectation 0 and variance 4 has the shape
exp(2y2/8)/(2

ffiffiffiffiffiffi
2p
p

). Notice that for y , 0, the
lower limit of the folding integral is j y j instead of 0
since the integrand cannot be negative for it is a
product of distributions. The distribution fY(y ja,
y� 0) ¼H(y)(1 þ y)e2y/2 is obtained according to
equation (4) by truncating fY(y ja) at y ¼ 0 and
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renormalising (see Figure A1). Its expectation and
standard deviation are

by ¼ 3
2

; uðbyÞ ¼ ffiffiffi
7
p

2
¼ 1:32288: ðA:15Þ

Quantiles are needed for the limits y/ and y. of
the coverage interval. They are determined by
means of the distribution function
FY ðy j a; y � 0Þ ¼ 1� ð2þ yÞe�y=2 obtained by
integrating the distribution density from 0 to y.
Equations (8) and (9) first yield the conditions:

1� ð2þ y/Þe�y/

2
¼ g

2
;

1� ð2þ y.Þe�y.

2
¼ 1� g

2
:

ðA:16Þ

Solving for the exponents leads to the following
iteration equations and results

y/ ¼ ln
2þ y/

2� g

� �
¼ 0:05002;

y. ¼ ln
2þ y.

g

� �
¼ 4:93186

ðA:17Þ

by starting with suitable values, for instance, values
0. Equations (A.16) are not solved for the limits in
the brackets since this would lead to divergent iter-
ations. The decision threshold y* can be obtained in
a similar way. In order to determine the functioneaðeyÞ, the gross-effect count number ng has to be
replaced by ðeyþ r0Þtg � 1 ¼ 1 if ey ¼ 0. But ng
already equals 1. Therefore, the distributions
fY ðy jeaðey ¼ 0ÞÞ and fY ðy j aÞ ¼ ð1þ j y j Þe� j y j =4 are
in the present case identical and symmetric with
respect to y ¼ 0. The integral of this distribution
from 21 to y � 0 is the distribution function
FYðy jeaðey ¼ 0ÞÞ ¼ 1� ð2þ yÞe�y=4. It equals 1/2
for y ¼ 0 since the distribution is even. Equation
(10) now reads

1� ð2þ y*Þe�y*

4
¼ 1� a: ðA:18Þ

Solving for the exponent leads to the iteration
equation and the decision threshold

y* ¼ ln
2þ y*

4a

� �
¼ 3:27181: ðA:19Þ

Not only the analytical but also the MC calculation
of the detection limit y] requires much more effort,
mainly since the value ðeyþ r0Þtg � 1 ¼ eyþ 1 . 1
replacing ng is in general no longer a natural
number. The distribution function FY ðy jeaðeyÞÞ is

Figure A2. Detection limit y] as a function of the
measurement duration t of the numeric example treated.
The double decision threshold 2y*G of the Gaussian case is
used as the scaling function since, asymptotically for large
t, it equals the detection limit. (1) Gaussian approach
according to ISO/FDIS 11929(2) and equation (A.14) with
a ¼ 0.41121. (2) Approximation of the analytical and MC
approaches (dashed line). The coefficient b ¼ 20.09486 is
obtained by adaption to the analytical result (3) at t ¼ 1
according to equations (A.19) and (A.23). See the text for

more details.

Figure A1. Comparison of two cases of the distribution of
possible non-negative true measurand values y for the
numeric example treated, of the best estimate by (expectation)
of the measurand Y with the associated standard
uncertainty uðbyÞ (standard deviation), and of the limits
y/ and y. of the coverage interval. (1) Analytical approach,
(2) Gaussian approach according to ISO/FDIS 11929(2)

(dashed lines). The decision threshold values y* can also
be compared since the distributions fY ðy j aÞ and
fY ðy jeaðey ¼ 0ÞÞ are identical in the simple data case
considered with n ¼ 1 event recorded in the gross and
background measurements of duration t ¼ 1 (arbitrary time
unit). The remarkable difference of the y. values is caused

by the more pronounced distribution tail in case (1).
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needed, at least for y � 0, to obtain y] from the con-
dition FY ðy* jeaðey ¼ y]ÞÞ ¼ b according to equation
(11). It follows from equations (3) and (A.3):

FY ðy jeaðeyÞÞ ¼ K
Gðeyþ 2Þ ðy � 0Þ ðA:20Þ

with

K ¼
ð1

0

ð1

0
Hðy� j1 þ j2Þjeyþ1

1 e�j1j2e�j2 dj1dj2

¼
ð1

0

ð1

maxð0;j1�yÞ
j2e�j2 dj2

 !
j
eyþ1
1 e�j1 dj1

¼
ð1

0
ðmaxð0; j� yÞ þ 1Þjeyþ1


 expð�j�maxð0; j� yÞÞdj

¼
ðy

0
jeyþ1e�jdjþ

ð1

y
ðj� yþ 1Þjeyþ1e�2jþydj

¼ Gðeyþ 2Þ � Gðeyþ 2; yÞ þ ey

2eyþ3


 ðGðeyþ 3; 2yÞ � 2ðy� 1ÞGðeyþ 2; 2yÞÞ:
ðA:21Þ

The subscript 1 is dropped. Gða; xÞ ¼
Ð1

x ja�1e�jdj
is an incomplete gamma function(27,34,36). Equation
(A.21) applies only for y � 0. For y ¼ 0, the
distribution function has the particular value
FY ð0 jeaðeyÞÞ ¼ ðeyþ 4Þ=2eyþ3. By introducing
Q(a, x) ¼ G(a, x)/G(a) and using the well-known
recurrence formula G(a þ 1) ¼ aG(a) for a ¼ eyþ 2,
finally

FY ðy jeaðeyÞÞ ¼ 1�Qðeyþ 2; yÞ þ ey

2eyþ3



�
ðeyþ 2ÞQðeyþ 3; 2yÞ

� 2ðy� 1ÞQðeyþ 2; 2yÞ
�
: ðA:22Þ

is obtained. A subroutine for a numeric calculation
of Q(a,x) is provided by reference (27). The result

y] ¼ 8:66083 ðA:23Þ

for the detection limit is found by varying ey until
the distribution function assumes the value b.

The results according to equations (A.15), (A.17),
(A.19) and (A.23) should be compared with those
according to equations (A.12)–(A.14) of the
Gaussian approach with t ¼ 1.

MC approach

The results of equations (A.15), (A.17) and (A.19)
could easily be verified with an accuracy of at least
two or three significant digits by an MC run with
N ¼ 106 samples drawn by means of equation (A.4).
A computing time of a few seconds per MC run was
needed on a moderately fast personal computer. Not
only the measurement duration t ¼ 1 was con-
sidered, but also 12 other values up to t ¼ 1000 (see
Figure A2). In the case of the detection limit,
equation (A.4) could not be used directly since
ng ¼ eyþ 1 is then in general not a natural number.
Instead, the result was obtained by applying the
modified sampling according to equations (A.4)–
(A.6) with n ¼ ng ¼ eyþ 1 ¼ mþ l. Random-
number generators for the gamma distribution from
references (27,37) were also used.

Let y† be any one of by; uðbyÞ; y/; y.; y*; y]

and y]=ð2y*
GÞ and, moreover, y†

G be that y† obtained
by the Gaussian approach. Then the following
empirical approximations turn out to have in the
considered data case a sufficiently large accuracy for
every t:

y† � y†
G þ

c
t

; c ¼ y† j t¼1 � y†
G j t¼1: ðA:24Þ

The values on the right-hand sides of equation
(A.24) are given by equations (A.12)–(A.15), (A.17),
(A.19) and (A.23). MC is not involved.

As an example of the dependence of the results on
the measurement duration t, values y]=ð2y*

GÞ are
shown in Figure A2. Here, the double decision
threshold 2y*

G is used as the scaling function since,
asymptotically for large t, it equals the detection
limit y]. The corresponding plots for all the y† look
quite similar. There are small systematic differences
between the values y† according to equation (A.24)
and the MC results y†

MC. They are obvious for small
t ,� 20, but disappear for large t, and have for each
y† at t � 5 their maximum of
j y† � y†

MC j =y†
MC ,� 2:2 %, in particular, �0:4 %

for y]=ð2y*
GÞ, and with the exception of �5:5 % for

y/.
The term c/t in equation (A.24) and the men-

tioned systematic differences can be caused by terms
of higher order in 1=

ffiffi
t
p

represented by the correc-
tion terms and the dots following the leading
Gaussian terms in equations (A.36)–(A.40) with t 	
t and b3 ¼ 0. Although the two correction terms in
equation (A.37) disappear rapidly with t! 1, they
can contribute appreciably for smaller t or t to devi-
ations from the Gaussian case.

For all the considered values of t, the relative MC-
induced uncertainties uMCðy†Þ=y† ,� 2:4
 10�3

were obtained in the same order of magnitude
according to equation (40) with n ¼ 20 independent
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MC runs. As an exception, the rather small y/ has a
relative MC-induced uncertainty ,�1:2
 10�2.

APPENDIX 3: PROBLEMS IN MC APPLICATION

Some typical problems are involved in the appli-
cation of the MC method in the practice of ionising-
radiation measurement. Four of them are treated in
the following. They can occur already with the
simple wipe test in radiation protection and are
caused by

(a) an MC-statistical divergence,
(b) a strongly non-linear model function,
(c) using a Gaussian instead of a gamma

distribution,
(d) a non-existent detection limit.

MC-statistical divergence

In many cases, the MC approach does not converge.
This can be caused by a non-negative input quantity
X, which occurs reciprocally in the model function G
and can assume the value j ¼ 0. The expectation of
1/X then does not exist. Examples are the denomi-
nator quantities X5, X7, . . . of the model equation

Y ¼ ðX1 � X2X3 � X4Þ �
X6X8 . . .

X5X7 . . .
ðA:25Þ

which is often appropriate in ionising-radiation
measurement and is therefore treated in ISO/FDIS
11929(2). A simple truncation of the distribution
fX( j) at j ¼ 0 does not remove the divergence. Then
an attempt has to be made to truncate fX( j) at a
reasonably assessed value j . 0. This can be done,
for instance, by replacing the distribution by a
uniform distribution with the same expectation and
variance, provided that the standard uncertainty of X
is small enough so that the lower bound of the
uniform distribution is positive.

This advice may seem somewhat arbitrary since,
according to the PME, a Gaussian distribution
should be assigned to X if only an estimate x and
the associated standard uncertainty u(x) are known.
But often there is much more, still unused infor-
mation from previous measurements, experience or
elsewhere that can justify a reasonable truncation of
the distribution at a positive value of X. This is
allowed in BS and is similar to using a more realistic
uniform count rate prior in Appendix 1 instead of a
theoretical prior proportional to the reciprocal count
rate. Nevertheless, if the distribution fX( j) is not
truncated and samples j , 0 are admitted, then,
remarkably, the expectation E(1/X ) exists as a prin-
cipal integral value sinceða

�a

fX ðjÞ
j

dj ¼ 2a f 0X ð0Þ þ
a3

9
f 000X ð0Þ þ � � � ðA:26Þ

with some a by using a Taylor expansion of the dis-
tribution at j ¼ 0. The integral is very small in the
case of the Gaussian distribution if x � u(x). But
the MC-induced uncertainty uMC associated with
E(1/X ) turns out to be infinite according to
equation (25) since the integral

Ð a
�a L2ðjÞdj for

LðjÞ ¼ fY ðjÞ=j in most cases does not exist. Finally,
it should be noted that even with a truncated distri-
bution of X, the distribution of 1/X and, as a conse-
quence, also the distribution of Y according to
equation (A.25), can show pronounced upper tails.

Strongly non-linear model function

There are other cases where the results obtained from
a convergent MC approach can differ significantly
from those of the Gaussian approach because of a
strongly non-linear model function or non-Gaussian
distributions of a few input quantities. To avoid such
cases in practice, the measurement procedure should
be inspected. The input quantities causing the
problem often have relatively large uncertainties. An
attempt should be made to improve the accuracy in
the measurements of these quantities.

An example is again a factor 1/X as in equation
(A.25) with a given value x and standard uncertainty
u(x) of X. Then, 1/x is inserted with the ISO/FDIS
11929 approach in contrast to

Eð 1
X
Þ ¼ 1

2d
ln
�

xþ d

x� d

�
¼ 1

x

�
1þ u2ðxÞ

x2 þ � � �
�

;

d ¼ uðxÞ
ffiffiffi
3
p

ðA:27Þ

with the MC approach if a uniform distribution is
assigned to X with the expectation x, the variance
u2(x), the width 2d, and x 2 d. 0. The smaller u(x),
the more the two compared values 1/x and E(1/X )
agree.

Gaussian approximation of a gamma distribution

The gamma distribution plays a dominant part in
counting radiation events (see Appendix 1). But MC
count rate sampling according to equation (A.4) is
not very practical for a large number n of counts.
Although the standardised gamma distribution is
known to converge (in distribution) to the standar-
dised Gaussian distribution with n!1(17), the
questions remain of how fast this convergence is and
what the consequences are when the gamma distri-
bution is approximated by the Gaussian one. To
investigate these questions, the model equation Y ¼
X1 2 X2 ¼ Rg 2 R0 is again considered as in
Appendix 1. The distribution fY(y ja) is then given
according to equation (A.7) and the gamma
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distributions of the count rates X1 ¼ Rg and X2 ¼
R0 according to equation (A.3).

Any distribution f (y), which is to be approxi-
mated by the Gaussian distribution fGðyÞ ¼
expð�z2=2Þ=

ffiffiffiffiffiffiffiffiffiffiffi
2ps2
p

—where z ¼ (y 2 m)/s and
both distributions have the same expectation m and
variance s2 2 can be expanded in a series of
Hermite polynomials Hek(z)(34) used and defined by

f ðyÞ ¼ fGðyÞ
X1
k¼0

ak

k!
HekðzÞ;

HekðzÞ ¼ ð�1Þkez
2=2 dke�z

2=2

dzk :

ðA:28Þ

The defining equation is called the Rodrigues
formula. The Hermite polynomials meet the ortho-
gonality relationsð1

�1

e�z
2=2HejðzÞHekðzÞdz ¼

0 ð j = kÞffiffiffiffiffiffi
2p
p

� j! ð j ¼ kÞ:

�
ðA:29Þ

In particular, He0ðzÞ ¼ 1;He1ðzÞ ¼ z, He2ðzÞ ¼
z2 � 1;He3ðzÞ ¼ z3 � 3z and He4ðzÞ ¼ z4 � 6z2 þ 3.
The coefficients aj are obtained by multiplying the
series in equation (A.28) by Hej(z), integrating, and
using the orthogonality relations. This yields

aj¼s

ð1

�1

HejðzÞf ðyÞdz ¼
ð1

�1

Hej
y� m

s

� 	
fðyÞdy:

ðA:30Þ

In particular, a0 ¼ 1, a1 ¼ a2 ¼ 0, the skewness a3 ¼
m3/s

3 and the excess a4 ¼ m4/s
4 2 3 of the distri-

bution f (y) follow where mj ¼ EððY � mÞjÞ is the jth
central moment of f (y). If f (y) is symmetric with
respect to y ¼ m, then aj ¼ 0 for all odd j. Finally,

f ðyÞ ¼ fGðyÞ 1þ a3

3!
He3ðzÞ þ

a4

4!
He4ðzÞ þ � � �

� 	
ðA:31Þ

The distribution fY(y ja) of Y ¼ Rg—R0 accord-
ing to equation (A.7) is now taken as f (y). Its expec-
tation m ¼ ðng þ 1Þ=tg � ðn0 þ 1Þ=t0 ¼ rg � r0 and
variance s2 ¼ rg=tg þ r0=t0 are already known. Its
skewness a3 and excess a4 are also needed to show
the behaviour of the distribution for large numbers
of recorded radiation events and measurement
durations.

To this end, a gamma-distributed count rate R
with the true value @ is first considered with a
number n of counts recorded from a Poisson distri-
bution during a measurement of duration t. The

gamma distribution fRð@ j n; tÞ is given according to
equation (A.3). The characteristic function of R then
becomes

fRðkÞ ¼ EðeikRÞ

¼
ð1

0

ð@tÞne�@t�ð1�ik=tÞ

Gðnþ 1Þ dð@tÞ

¼ 1

ð1� ik=tÞnþ1 ðA:32Þ

by substituting v ¼ @t � ð1� ik=tÞ. This leads to

fY ðkÞ ¼ Eðexpðik � ðRg � R0ÞÞ
¼ fRg

ðkÞfR0
ð�kÞ ðA:33Þ

lnfY ðkÞ ¼ � ðng þ 1Þ lnð1� ik=tgÞ

� ðn0 þ 1Þ ln 1þ ik
t0
¼
X1
j¼1

kj
ðikÞj

j!

ðA:34Þ

kj ¼ ð j � 1Þ! ng þ 1

tj
g
þ ð�1Þj n0 þ 1

tj
0

 !

¼ ð j � 1Þ! rg

t j�1
g

þ ð�1Þj r0

t j�1
0

 ! ðA:35Þ

by expanding ln fY(k) in a power series of ik. The
coefficients kj are the cumulants of Y. In particular,
these are the expectation k1 ¼ m ¼ rg � r0, the var-

iance k2 ¼ s2, the skewness k3=k
3=2
2 ¼ k3=s

3 ¼ a3

and the excess k4=k
2
2 ¼ k4=s

4 ¼ a4
(34).

In order to make the measurement more accurate,
the data ng þ 1; n0 þ 1; tg and t0 are now enlarged
proportionally to an increasing parameter t such
that rg, r0 and m remain constant. Then,
s2 	 1=t; kj 	 1=t j�1; a3 	 1=

ffiffiffi
t
p

and a4 	 1=t.
Equation (A.31) finally becomes with some coeffi-
cients b3 and b4 independent of t

fY ðy j aÞ¼ fGðyÞ 1þ b3ffiffiffi
t
p He3ðzÞþ

b4

t
He4ðzÞ þ � � �

� �
ðA:36Þ

Here, fG(y) represents the Gaussian distribution
approximating fY(y ja) and the large bracket is the
correction factor, the second and all following terms
of which vanish with the increasing t. The dots
stand for terms proportional to t2n with n . 1. The
term with b3 exactly vanishes for b3 ¼ 0, i.e. if fY(y j
a) has zero skewness a3 ¼ 0, for instance, if it is
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symmetric with respect to the expectation m as in
the data case of Appendix 2. It is stressed that the
statement according to equation (A.36) is not absol-
ute but only shows how the distribution of Y is
related to fG(y), which itself depends on t since
s2 	 1/t and thus converges (in distribution) to the
delta function d(y—m) if t!1.

Any type-A integral I ¼
Ð b

a gðyÞfY ðy j aÞdy and the
corresponding integral IG¼

Ð b
a gðyÞfGðyÞdy with the

Gaussian distribution are now considered. Using
equation (A.26) and assuming for g(y) at y ¼ m with
y� m ¼ sz a convergent Taylor series
gðyÞ ¼ gðmÞ þ sg0ðmÞzþ s2g00ðmÞz2=2þ � � � yield

I ¼ IG þ
b3ffiffiffiffiffiffiffiffi
2pt
p

ððb�mÞ=s
ða�mÞ=s

e�z
2=2 ðgðmÞ þ sg0ðmÞzÞ


He3ðzÞdz þ
b4gðmÞ
t
ffiffiffiffiffiffi
2p
p

ððb�mÞ=s
ða�mÞ=s

e�z
2=2 He4ðzÞdzþ � � �

ðA:37Þ

Both the correction terms on the right-hand side of
equation (A.37) disappear for t!1 not only
because of t in the denominators, but also since the
integrals vanish if a; b = m. This follows with
s 	 1=

ffiffiffi
t
p

and 1 ¼ He0ðzÞ and z ¼ He1ðzÞ from the
orthogonality relations according to equation (A.29)
since the integral limits tend to +1. Thus, if the
correction terms are neglected or if a ¼ �1 and
b ¼ þ1, and with the Taylor series of g(y), then

I ¼ EðgðYÞÞ ¼ IG þ � � � ¼ gðmÞ þ s2g00ðmÞ
2

þ � � �

ðA:38Þ

A type-B or type-C integral I(h) depends on a
parameter h to be determined from the equation
I(h) ¼ p with a given integral value p. Let
IðhÞ ¼ IGðhÞ þ dIðhÞ=tn ðn . 0Þ and, moreover, hG
first obtained from IGðhGÞ ¼ p. By expanding at hG
then

p ¼ IðhÞ ¼ IGðhGÞ þ
1
tn

dIðhGÞ

þ I 0GðhGÞ þ
1
tn

dI 0ðhGÞ
� �

ðh� hGÞ þ � � �

ðA:39Þ

follows. The dots refer to terms proportional to
higher powers of h� hG. Equation (A.29) is solved
for h with IðhÞ ¼ IGðhGÞ ¼ p and results in

h ¼ hG �
dIðhGÞ
tnI 0GðhGÞ

þ � � � ðA:40Þ

Here, the dots also include terms proportional to
t�n

0
with n0 . n. The leading correction term is thus

also proportional to t�n. If a p-quantile h of a distri-
bution f (y) is to be determined, then
I 0GðhGÞ ¼ fGðhGÞ.

Equations (A.36)–(A.40) also apply quite generally
to any distribution fY ðy j . . .Þ ¼ fGðyÞþ
dfY ðy j . . .Þ=tn. See the MC subsection of Appendix 2
for numeric examples.

Non-existent detection limit

Sometimes, there is no detection limit y]. This can
easily be seen in equation (A.14) cited from ISO/
FDIS 11929(2). If k2c2 � 1, then a meaningless
negative or infinite y] is obtained and the measure-
ment procedure tested is thus not suitable at all for
the intended measurement purpose. c2 ¼ u2

relðwÞ is
the squared relative standard uncertainty associated
with the estimate w of the fraction, summarily
denoted by W, in the model equation (A.25).

More efforts are required to verify the non-exist-
ence of y] with the MC method. But if a guideline
value yr is given, then y] is not always needed. It is
sufficient that the condition I7 ¼ PðyrÞ � b is met
for the decision that the measurement procedure is
suitable (see equation (12) and the accompanying
text). The type-A integral I7 can easily be obtained
by MC. If I7 � b, then y] exists. If I7 . b, then y]

possibly also exists, but the measurement procedure
is unsuitable. In addition, the shape of the function
PðeyÞ must be analysed. A minimum greater than b
will then give a strong indication that y] does not
exist. In this case, an attempt should be made to
reduce by experimental means the uncertainties of
the input quantities Xi contributing to the fraction
W.

The wipe test as a problematic example

For the examination of surface contamination by
means of the wipe test, the measurand Y is the
surface activity concentration AF (activity divided by
the wiped area). For this task, the best estimate, the
associated standard uncertainty and the character-
istic limits are to be calculated according to ISO/
FDIS 11929(2) and MC. The model equation in this
case reads

Y ¼ AF ¼ GðXÞ ¼ X1 � X2

X3 X4 X5
¼

@g � @0

F k 1
: ðA:41Þ

X1 ¼ @g is the gross count rate and X2 ¼ @0 is the
background count rate, X3 ¼ F is the wiped area,
X4 ¼ k is the detection efficiency and X5 ¼ 1 is the
wiping efficiency, i.e. the fraction of the wipeable
activity for the material of the surface to be
examined.
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After the counting measurements of the gross
effect and of the background effect have been
carried out with the respective measurement dur-
ations tg and t0, the respective numbers ng and n0 of
the recorded radiation events are available. These
numbers are used according to GUM(1) and ISO/
FDIS 11929 to specify the estimates x1 ¼ rg ¼ ng=tg
with u2ðx1Þ ¼ ng=t2

g ¼ rg=tg for the gross count
rate X1 ¼ @g and x2 ¼ r0 ¼ n0=t0 with
u2ðx2Þ ¼ n0=t2

0 ¼ r0=t0 for the background count
rate X2 ¼ @0. These specifications apply to measure-
ments with time pre-selection. The uncertainties of
the measurement durations are neglected since time
can be measured much more accurately than any
other physical quantity involved. Since the numbers
of recorded events are large, the gamma distri-
butions of the count rates are replaced by Gaussian
distributions for the MC calculations. This causes
problem (c).

The relative standard uncertainty of the wiped
area F is given as 10% from experience, leading to
u(F ) ¼ 10 cm2. The detection efficiency k is deter-
mined using a calibration source with a certified
relative standard uncertainty of 5%. On the assump-
tion that the statistical contribution to the

measurement uncertainty of the detection efficiency
is negligible, u(k) ¼ 0.0155 results. The quantities F
and k occur in the denominator of the model func-
tion G. Gaussian distributions therefore cannot be
assigned to them because of problem (a). Instead,
uniform distributions are used with the same respect-
ive expectations and standard deviations u leading to
the width D ¼ u

ffiffiffiffiffi
12
p

.
The wiping efficiency 1 of the wipe test is known

from previous measurements to be randomly distrib-
uted between 0.06 and 0.62. These bounds yield the
mean estimate 1 ¼ 0.34 and the associated standard
uncertainty uð1Þ ¼ D1=

ffiffiffiffiffi
12
p

since, according to the
PME, a uniform distribution over the region of the
possible values of 1 with the width D1 ¼ 0:56 can be
specified.

A more informative distribution function F1 can
be established if a pool of comparable wiping-effi-
ciency data 1k from the previous measurements is
available. See paragraphs (c) and (d) of subsection
‘Additional remarks’ below equation (19).

For all the input data and results, see Table A1.
The results are calculated according to ISO/FDIS
11929 (ISO) and by MC according to the present
paper. As exceptions, the primary estimate y0 ¼ G(x)

Table A1. Input data and results of the wipe test example.

Quantity Symbol Value Standard uncertainty

Input data
Gross effect

Number of recorded events ng 2591
Measurement duration tg 360 s Neglected

Background effect
Number of recorded events n0 41782
Measurement duration t0 7200 s Neglected

Wiped area F, u(F ) 100 cm2 10 cm2

Detection efficiency k, u(k) 0.31 0.0155
Wiping efficiency 1, u(1) 0.34 0.56=

ffiffiffiffiffi
12
p

Lower and upper bounds of 1 0.06, 0.62
Probabilities a, b, g 0.05
Guideline value yr 0.5 Bq cm22

Number of MC samples N 106

Quantity Measurand: Y;
Symbol

AF (ISO) (Bq cm22) AF (MC) (Bq cm22)

Results
Primary estimate y0 0.13227 0.13227

with standard uncertainty u(y0) 0.06604 0.06604
Best estimate by 0.13590 0.1902

with standard uncertainty uðbyÞ 0.06220 0.1452
Lower coverage interval limit y/ 0.02170 0.0659
Upper coverage interval limit y. 0.26235 0.620
Decision threshold y* 0.02030 0.0323
Radiation effect present? y0 . y*? Yes Yes
Detection limit y] 0.11654 0.0953
Measurement procedure suitable? y] � yr? Yes Yes
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and the associated standard uncertainty u(y0) follow
from GUM and are thus identical in the ISO and
MC cases. Only the significant digits of the MC
results are indicated. These are the digits that barely
changed in MC runs repeated several times with
different independent histories. The MC-
induced uncertainty of the MC results are
,2 
 1024 Bq cm22 except ,1.3 
 1023 Bq cm22

for the upper coverage interval limit.
The considerable differences between the corre-

sponding results of the ISO and MC approaches are
mainly due to the possibly small values of the
wiping efficiency causing pronounced upper tails of
distributions. This problem (b) should provide an
incentive to revise the measurement procedure.
Possibly, the wiping efficiency can be increased or
the associated standard uncertainty reduced by
using a more effective wiping material.

The wipe test example was especially designed to
illustrate the problems that may occur in MC appli-
cation. Moreover, the large differences between the
corresponding ISO and MC results can make it
clear that there are cases where an MC approach
will be necessary and advantageous.

APPENDIX 4: MORE ABOUT MC-INDUCED
UNCERTAINTY

In order to get a deeper insight into the matter of
MC-induced uncertainty uMC, the section dealing
with this subject is here continued.

Consider a quantity Z ¼ g(X) that depends on n
other quantities Xi. Let estimates xi of the latter
quantities and the associated standard uncertainties
u(xi) be known and the correlation coefficients be
denoted by r(xi,xk). If the function g is assumed to
be sufficiently linear in a neighbourhood of X ¼ x
determined by the known uncertainties, then, at
least approximately, the estimate z ¼ g(x) of Z is
associated with the standard uncertainty u(z) given
by(1,14,15)

u2ðzÞ ¼
Xn
i;k¼1

@g
@xi

@g
@xk

uðxiÞuðxkÞrðxi; xkÞ ðA:42Þ

where @g=@xi ¼ @g=@Xi j X¼x. Since rðxi; xiÞ ¼ 1 and
j rðxi; xkÞ j � 1, equation (A.42) leads to an
upper bound of u(z) by applying
j aþ bþ � � � j � j a j þ j b j þ � � � for arbitrary a, b,
. . . and then performing a square root:

uðzÞ �
Xn
i¼1

j @g
@xi
j uðxiÞ: ðA:43Þ

Equality holds if n ¼ 1. If, in particular, Z ¼ X1/X2
with x1, x2 . 0, then z ¼ x1/x2 and @g=@x1 ¼ 1=x2

and @g=@x2 ¼ �x1=x2
2. This yields the relation

uðzÞ
z
� uðx1Þ

x1
þ uðx2Þ

x2
: ðA:44Þ

The sum of the relative standard uncertainties of the
numerator and the denumerator of a fraction is thus
always an upper bound of the relative standard
uncertainty of the fraction even if the numerator and
the denumerator are correlated. If they are uncorre-
lated, then

uðzÞ
z
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðx1Þ

x1

� �2

þ uðx2Þ
x2

� �2
s

: ðA:45Þ

Let Z ¼ X1 2 X2 with two MC-determined esti-
mates x1 ¼ J and x2 ¼ J0 of the same integral I.
Then

u2
MCðJ � J 0Þ ¼ u2

MCðJÞ þ u2
MCðJ 0Þ

� 2uMCðJÞuMCðJ 0ÞrðJ; J 0Þ
ðA:46Þ

according to equation (A.42). This MC-induced
uncertainty becomes a minimum if a strong positive
correlation is present, i.e. if r(J, J0) ¼ þ1. It even
nearly vanishes if, in addition, J � J 0 and, thus,
uMCðJÞ � uMCðJ 0Þ. This is the reason why J and J0

should always be calculated with the same history of
standard random numbers if the difference J 2 J0 is
to be determined as in equation (37).

Let M represent any one of the counted numbers
N(. . .) needed, for instance, in equations (28)–(33).
It follows from a binomial distribution since every
one of N samples is either counted with a probability
p or not. This distribution has the standard devi-
ation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np ð1� pÞ

p
, which is the MC-induced stan-

dard uncertainty uMC(M ) associated with M. If p is
not given, it is estimated by M/N. Then,

uMCðMÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M ðN �MÞ

N

r
;

uMCðMÞ
M

¼ uMCðM=NÞ
M=N

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M
� 1

N

r
: ðA:47Þ

Notice
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p ð1� pÞ

p
� 1=2 in general and ¼ 0:21794

for p ¼ 0.05 and 0.95.
As an example of the application of equation

(A.47), the probability p ¼ FY(q) of a given quantile
q of some random variable Y is to be calculated
by MC with a relative standard uncertainty
uMCðpÞ=p , 0:01. How many samples are
needed? Let M ¼ Nðyk � qÞ. Replacing the estimate
M/N of p by p itself yields uMCðpÞ=p ¼
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðpNÞ � 1=N

p
, 0:01 or N . ð1=p� 1Þ 
 104. For

an expected p � 0:01;N .� 106 samples are thus
required.

For another application, by according to equation
(35) is considered with M ¼ Nðyk � 0 j aÞ and
equations (A.44) and (A.47). Then,

by � J1

J0
¼ yH

M=N
; ðA:48Þ

u2
MCðJ1Þ¼u2

MCðyHÞ¼ 1
N ðN�1Þ

XN

k¼1

ykHðykÞ�yH
� �2

¼J2�J2
1

N
;

ðA:49Þ

uMCðbyÞby �uMCðyHÞ
yH

þuMCðM=NÞ
M=N

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2=J2

1 �1
N

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M
� 1

N

r
	 1ffiffiffiffiffi

N
p ðA:50Þ

since M � Np. In equation (A.49), the well-known
expression for the (type-A(1)) uncertainty of a mean
is applied. N 2 1 (or N 2 3 in BS(22)) is replaced
again by the very large N (see also the text below
equation (24)). The MC run may be stopped if
uMCðbyÞ=by becomes sufficiently small.

The number N of samples and the MC-induced
uncertainty can also be assessed by applying the
uncertainty equation (A.43) with n ¼ 1 to, for
instance, the type-B integral according to equation
(36), i.e. to IðhÞ ¼

Ð h
c f ðxÞdx ¼ 1 �M=N with

M ¼ Nðc � xk � hÞ and the constants c, 1 and N.
Equation (A.43) then reads uMCðIÞ¼ j dI=dh j 

uMCðhÞ ¼ f ðhÞuMCðhÞ � uMCðMÞ=N. Inserting
uMCðMÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1ð1� 1Þ

p
and solving for N finally

leads with f ðhÞ � ðJðh1Þ � Jðh0ÞÞ=ðh1 � h0Þ to

N � 1ð1� 1Þ
f 2ðhÞu2

MCðhÞ
;

uMCðhÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ð1� 1Þ

N

r
� j h1 � h0

Jðh1Þ � Jðh0Þ
j :

ðA:51Þ

The estimates J(h0) and J(h1) should again be deter-
mined by using the same history of standard
random numbers. If a centred normal distribution
f ðhÞ ¼ expð�h2=ð2s2ÞÞ=

ffiffiffiffiffiffiffiffiffiffiffi
2ps2
p

and the 1-quantile
h ¼ 21.65s for 1 ¼ 0.05 with c ¼ 21 is considered
and, moreover, uMC(h) ¼ 0.01s is required, then at

least N � 4.5 
 104 samples are needed. Numbers N
of a similar order of magnitude, mainly determined
by 1/uMC

2 (h), are obtained with other distributions.
Equation (A.51) can be applied to the integrals I3,
I4, I5 and I7.

The MC-induced standard uncertainty uMC(h)
associated with the solution h of a type-C
integral, namely the detection limit h ¼ y], can be
obtained similarly to equation (A.51). But the
standard uncertainty uMC(b) associated with the
already MC-determined upper integral limit
b ¼ y*, the decision limit, must in addition be
taken into account. Let I ¼ I(h,b), then
dI ¼ ð@I=@hÞdhþ ð@I=@bÞdb or

@I
@h

dh ¼ dI � @I
@b

db;

@I
@b
� A ¼ Jðb1;hÞ � Jðb0;hÞ

b1 � b0
;

@I
@h
� B ¼ Jðb;h1Þ � Jðb;h0Þ

h1 � h0
ðA:52Þ

and, accordingly, with (dz)2 replaced by uMC
2 (z)

for any quantity z and if b and h are deter-
mined by using independent histories to avoid a
correlation,

@I
@h

� �2

u2
MCðhÞ¼u2

MCðIÞþ
@I
@b

� �2

u2
MCðbÞ: ðA:53Þ

With u2
MCðIÞ¼1ð1�1Þ=N as derived in the preced-

ing paragraph, this finally yields

u2
MCðhÞ�

1ð1�1Þ=NþA2u2
MCðbÞ

B2 ðA:54Þ

This equation can be applied to I6 for h ¼ y] and
b ¼ y*. Then, u2

MC(y*) to be inserted can be
obtained from equation (A.51) by using an indepen-
dent history.

APPENDIX 5: GLOSSARY OF SOME
IMPORTANT TERMS AND SYMBOLS

Z general random variable, general
estimator of a physical quantity

z, z values of Z
Y estimator assigned to the measur-

and; also used for the measurand
itself
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y value of Y, general estimate of
the true measurand value, poss-
ible true measurand value if
y � 0; particular values y are
marked by affixes

u(y) measurement uncertainty of Y
associated with y; standard uncer-
tainty if y is the expectation of Y

a information set of data, con-
ditions, assumptions, relations
and other relevant information

fY(y ja) distribution (probability density)
of Yon the information a

FY(y ja)
¼ Pr(Y � y ja)
¼
Ð
21

y fY(h j a)dh

distribution function of Y on the
information a

X vector of input quantity estima-
tors Xi

j vector of general values ji of Xi
fXðj j aÞ distribution of X on the infor-

mation a
G(X) model function, Y ¼ G(X) model

equation
x vector of given particular values

of Xey assumed true measurand valueeaðeyÞ modification of a as a function of ey
y0 primary estimate of the true mea-

surand value

by best estimate of the true measur-
and value

y/; y. lower and upper limits of the
coverage interval

y* decision threshold
y] detection limit
yk MC samples (k ¼ 1, . . . , N )
y(k) MC samples yk sorted by magni-

tude and renumbered
N total number of MC samples yk
N(conditions j
parameters)

number of MC samples yk

meeting the conditions
uMC MC-induced standard uncertainty
a probability of the physical effect

being falsely recognised as
present, although ey ¼ 0 (error of
the first kind)

b probability of the physical effect
being falsely recognised as
absent, although ey . 0 (error of
the second kind)

1 2 g coverage probability; probability
that the coverage interval con-
tains the true measurand value

I, J a particular integral and its
estimate

t duration of measurement
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