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Summary — The new international standard ISO 11929:2010 and a recent, more
general publication by the authors of the present paper provide for a non-negative radi-
ation measurand definitions of the best estimate, the associated standard uncertainty of
measurement, limits of coverage intervals, the decision threshold and the detection limit,
here summarized by the term characteristic values. These values are based on Bayesian
statistics and the ISO Guide to the Expression of Uncertainty in Measurement (GUM)
and are mathematically defined by means of moments and quantiles of probability dis-
tributions of the possible measurand values. During the preparation of the documents,
some criticisms were already expressed and alternatives proposed. These are described
and discussed in order to achieve agreement between the experts which can be used for
a future revision of ISO 11929:2010.

Zusammenfassung — Die neue internationale Norm ISO 11929:2010 und eine
jüngere, allgemeinere Publikation der Autoren des vorliegenden Papiers stellen für eine
nichtnegative Strahlungs-Messgröße Definitionen bereit für den besten Schätzwert, der
beigeordneten Standard-Messunsicherheit, die Grenzen von Überdeckungsintervallen,
die Erkennungsgrenze und die Nachweisgrenze, hier summarisch charakteristische Werte
genannt. Diese Werte basieren auf der Bayes-Statistik und dem ISO Guide to the Ex-
pression of Uncertainty in Measurement (GUM) und sind mathematisch definiert durch
Momente und Quantile von Wahrscheinlichkeits-Verteilungen der möglichen Werte der
Messgröße. Schon während der Ausarbeitung der Dokumente wurden Kritik geäußert
und Alternativen vorgeschlagen. Diese werden beschrieben und diskutiert, um zwi-
schen den Experten Übereinkunft zu erzielen, die für eine künftige Revision von ISO
11929:2010 verwendet werden kann.

Keywords — Measurement result, measurement uncertainty, coverage interval,
decision threshold, detection limit
Schlüsselwörter — Messergebnis, Messunsicherheit, Überdeckungsintervall,
Erkennungsgrenze, Nachweisgrenze
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1. Introduction

The recognition and detection of ionizing radiation are indispensable basic prerequisites
for radiation protection. For this purpose, the new standard ISO 11929:2010 [1] provides
characteristic limits, i.e. decision threshold, detection limit and limits of a coverage in-
terval, for a diversity of application fields. The decision threshold allows a decision to
be made for a measurement on whether or not, for instance, radiation of a possibly ra-
dioactive sample is present. The detection limit allows a decision to be made on whether
or not the measurement procedure intended for application to the measurement meets
the requirements to be fulfilled and is, therefore, appropriate for the measurement pur-
pose. The limits of a coverage interval—formerly called the confidence limits, also in
ISO 11929—include with a specified probability the true value of the measurand, i.e. the
physical quantity to be measured. In addition, the best estimate of the measurand and
the associated standard uncertainty are of interest, together called the (complete) meas-
urement result. In the following, the characteristic limits and the measurement result
are summarized by the term characteristic values. The best estimate, the standard un-
certainty, and the limits of a coverage interval are characteristic values appertaining to
a particular sample whereas the decision threshold and the detection limit characterize
the measurement procedure.

Because of developments in metrology concerning measurement uncertainty, laid down
in the ISO Guide to the Expression of Uncertainty in Measurement (GUM) [2], the new
ISO 11929:2010 [1] was drawn up by the authors of the present paper and others on
the basis of GUM, but using Bayesian statistics (BSt) [3–13] and the Bayesian theory
of measurement uncertainty [14–18]. This theory provides a Bayesian foundation for
GUM. Moreover, ISO 11929:2010 [1] is based on the definitions of the characteristic
limits [19], the standard proposal [20], the introducing article [21], and the precursory
ISO 11929-7:2005 [22]. It unifies and replaces all old parts of ISO 11929 and is applicable
not only to a large variety of particular measurements of ionizing radiation but also, in
analogy, to other measurement procedures.

The new standard ISO 11929:2010 [1] has a history of many years. It is itself a revised
version of the precursory ISO 11929-7:2005 [22] and ...-8:2005, DIN 25482-10:2000 [23],
...-12:2003 and ...-13:2003. These standards already provide the general procedure stip-
ulated in sections 5 and 6 of ISO 11929:2010 for the determination of the characteristic
values on the basis of Bayesian statistics (BSt) and the concept of measurement uncer-
tainty according to GUM (1993) [2] and DIN 1319-3:1996 and ...-4:1999 [24]. All earlier
published parts ISO 11929-1:2000 to ...-6:2005 and DIN 25482-1:1989 to ...-6:1997 are
founded on conventional, frequency-based statistics (CSt), as far as applicable. The gen-
eral procedure was first published in 1998 [19] and first stipulated by DIN 25482-10:2000
[23]. The new ISO 11929:2010 now merely unifies, generalizes and replaces on the basis
of BSt all the mentioned standard parts, which had been prepared since 1989 and earlier
for particular applications to various radiation measurements. These applications now
occur as examples in annexes B to D of ISO 11929:2010. The present paper and reference
[25] now take a step beyond the present state of standardization represented by ISO
11929:2010 by considering not only Gaussian normal probability distributions (GD) but
also other arbitrary ones. This history should make clear that the characteristic values
and the general procedure to obtain them are well defined and well established and
seem to have been successfully applied in practice during the past twelve years since
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no major criticism of the procedure has been received. But nothing is perfect. Thus, a
future revision of the new ISO 11929:2010 [1] may be justified.

Recently, a supplement [26] to GUM [2] has been published, dealing comprehensively
with the treatment of measurement uncertainty using the Monte Carlo (MC) method
in complex measurement evaluations. This provided an incentive for writing a corre-
sponding MC supplement [25] to ISO 11929 [1]. The paper is also essentially founded on
Bayesian statistics and can serve as a bridge between documents [1] and [26]. Moreover,
more general definitions (see section 4) and the MC computation of the characteris-
tic values make it possible to go a step beyond the present state of standardization
laid down in ISO 11929 since probability distributions rather than uncertainties can be
propagated. It is thus more comprehensive and promising.

Nevertheless, during the preparation of ISO 11929 [1] and its MC supplement [25],
the general fundamentals and definitions of the characteristic values were already criti-
cized and alternatives proposed. This requires a future discussion between the experts
concerned. Some material for such a discussion is presented in the present paper. A
satisfying consensus of opinion or at least a practicable compromise should be the aim
of the discussion on a future revision of ISO 11929 between the users of the standard
and experts in Bayesian statistics and decision theory. An attempt should also be made
to reconcile diverging Bayesian schools, called schools A and B in the following (see
subsection 5.5).

Applying Bayesian statistics (BSt) together with the principle of maximum (informa-
tion) entropy (PME) [10–16] and the Bernoulli principle in reference [25] and the present
paper (see subsections 3.1 and 5.5 and appendix A) makes it possible to also take into
account non-statistical information, for instance, of uncertain physical quantities and
influences, which do not behave randomly in repeated or counting measurements and
thus cannot be treated by conventional, frequency-based statistics (CSt). BSt and CSt
are both based on probability theory but differ essentially in their understanding of the
probability Pr (A) of a random event A. In CSt, the probability is the limit of the relative
frequency with which the event happens randomly in measurements repeated indepen-
dently more and more frequently under identical nominal conditions. In contrast, the
probability in BSt expresses the degree of belief, based on information actually available,
that the event will happen in a measurement, e.g., before the measurement is carried
out. An example is the probability 1/2 reasonably assigned to each side of a coin before
tossing the coin. This meaning of probability is in fact the classical one introduced by
Bernoulli and Laplace. BSt and CSt are asymptotically equivalent on the same basis
of data, conditions, assumptions and other information if both statistics are applicable.
But there are cases, for example, of non-statistical information where CSt cannot be
applied. For a comprehensive comparison of BSt and CSt in repeated measurements,
see reference [27].

The present paper serves to improve and generalize ISO 11929 [1]. It is written mainly
for experts, tutors, and developers of procedures and programs in the field of character-
istic values. Basic tools are stated in sections 2 and 3. Several probability distributions
are first formally introduced in section 2. In particular, these are distributions of the
measurand Y , which depends by a model equation Y = G(X1, X2, . . .) on input quanti-
ties Xi with their joint distribution also needed to perform a distribution propagation
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from Xi to Y . The way to establish distributions in general from available information
by using the PME or other methods such as the Bayes theorem is shown in section 3.
Then the characteristic values are mathematically stipulated in section 4 by means of in-
tegrals, i.e. moments and quantiles, of the distributions of Y . Metrological and practical
demands are observed. Sections 1 to 4 are taken in essence from the authors’ publica-
tion [25], but are revised, updated and supplemented. ISO 11929 [1] and reference [25]
are justified against criticisms in section 5. Proposed alternatives of the characteristic
values are discussed in section 6. The conclusions of section 7 comprise proposals for a
revision of ISO 11929. A derivation of the PME is given in appendix A. The mathemat-
ics of the shortest coverage interval is treated in appendix B. The uncertainty caused
by influences of sample treatment is calculated in appendix C.

For the definitions of the metrological terms used see references [1, 2, 26, 28], for statisti-
cal terms and symbols see, for example, references [29–31]. A glossary of some important
terms and symbols is given in appendix D.

There are problems in this respect between BSt and CSt, between BSt without and with
PME (schools A and B, respectively), and in nomenclature and notation (see subsections
2.1, 5.1 and 6.6). To avoid misunderstandings in such cases, it is attempted, if necessary,
to clearly and exactly define the concepts in question where they are introduced and
to designate and denote them in conformity with other usages as far as is suitable and
possible.

2. Distributions

2.1 Denotations and nomenclature

In the following, if not otherwise stated, an upper-case letter, say Z, is used to denote
some random variable and (preferably corresponding) lower-case letters z or ζ are used
for values of the random variable. The distinct meanings of the random variable and
its values should always be kept in mind. Bold-face symbols are used for sets of related
entities. For instance, a set of quantities or values {v1, v2, . . .} is abbreviated by the
corresponding symbol v used as a column matrix (or vector) (v1, v2, . . .)

>. The corre-
sponding v-space volume element dv is applied in multiple integrals. The (probability)
density (function), also called the density for short, of a random variable Z is denoted
by fZ(z | a) (similar to DIN 13303-1 [30] and to the symbol {z | a} for a set of elements
z with a property described by a). The set a summarily represents all the information
taken into account, i.e. data, conditions, assumptions, functional relations, and other
relevant information given or obtained from measurements and other sources. The data
can also comprise values of other random variables as statistical information, e.g., a
value v of a random variable V , if needed, written as V = v. Other information may be
non-statistical such as functional relations. Particular fixed values of a random variable
are marked by suitable affixes.

As in common practice and in ISO 11929 [1], the general symbol f is used for probability
densities and F for the corresponding (cumulative) (probability) distribution functions,
for instance, FZ(z | a) = Pr (Z ≤ z | a) =

∫ z
−∞ fZ(ζ | a) dζ or, conversely, fZ(z | a) =

dFZ(z | a)/dz. The joint density of a set Z of random variables Zi with values z is
denoted by fZ(z | a). Notice that the random variable Z or Z as a subscript of the
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distribution symbols f and F is not dropped [30]. This avoids mistakes, which can be
caused easily by the less informative, but simpler, bare symbols usually preferred in the
literature for brevity and convenience. Nevertheless, abbreviations such as f or fZ or
f(z) for fZ(z | a) are also sometimes well defined and are then used in the following if
there is no danger of misunderstanding. See also subsections 5.1 and 6.6.

According to ISO 3534-1 [29], (probability) distribution (of a random variable) is used in
the present paper as a general, generic term comprising the (cumulative) (probability)
distribution function F for a general random variable, the (probability) density (func-
tion) f for a continuous random variable, and the probability function p for a discrete
random variable. The words in brackets are often dropped for brevity and convenience
if there is no danger of misunderstanding. (Probability) density (function) is the most
frequently used term. The word function is here always dropped since any density in
physics is a function in the space just in question (e.g., mass density, neutron flux den-
sity). The common abbreviation pdf is not used since it can easily be misunderstood
as an operator symbol like sin or lim. The probability density function of the Gaussian
normal probability distribution is abbreviated by Gaussian density or simply by GD.
The functions FZ , fZ and pZ of the same random variable Z are taken as alternative,
equivalent representations of the (generic) distribution of Z (see also subsection 5.4).

2.2 Distributions for estimating physical quantities

A random variable Z, called an estimator, is assigned to every particular physical quan-
tity involved. Its values z (or ζ) are estimates of the physical quantity. Only for brevity
and convenience, the quantity and its estimator are denoted by the same symbol Z if
suitable and not otherwise stated, although they are not identical and should be dis-
tinguished as corresponding physical and mathematical entities, respectively. In this
way, for instance, “estimator R of the count rate” can be shortened to “count rate R”
although the count rate is not a random variable if the count rate is taken as a physical
quantity with a fixed true value to be determined.

The symbol f = fZ(z | a) of the estimator Z represents the probability density of
an estimate z as the true value of the physical quantity on the information a. The
estimate z is therefore also taken as a possible true value if f > 0 for z. An already
known or assumed f used as a computation input is called a prior. It is stressed again
that in BSt applied here to metrology, a distribution is in most cases a probability
density f in a degree-of-belief sense and represents the information about the physical
quantity actually present and taken into account. Such a distribution is not that of values
which occur in measurements repeated many times under identical or similar nominal
conditions as in CSt. However, CSt frequency distributions may also be involved, for
instance, the Poisson distribution in counting measurements.

In order to define the characteristic values in measurements of ionizing radiation, a
non-negative particular physical quantity Y , called the measurand, is considered that
quantifies the radiation effect of interest and assumes the true value 0 if the effect is not
present. This measurand is the very quantity for which the true value and the charac-
teristic values are to be determined. An estimator, also denoted by Y , with values y (or
η) and with a density fY = fY (y | a) is assigned to the measurand. The characteristic
values are based on this density (see section 4). The measurand Y depends on several
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input quantities X. This is expressed by the model equation Y = G(X). The joint input
density fX = fX(ξξξ | a) is needed to form fY by distribution propagation treated in
subsection 2.3. It is established by methods described in section 3.

2.3 Distribution propagation

Estimator sets X and Y of the physical input and output quantities involved are con-
sidered together with their values ξξξ and ηηη, respectively. Their joint densities based on
information sets a and a′, respectively, meet the product rule

fX,Y(ξξξ, ηηη | a, a′) = fY(ηηη | X = ξξξ, a′) fX(ξξξ | a) . (1)

This rule follows from the first equation of the general probability product rule Pr (A∩
B) = Pr (A | B) Pr (B) = Pr (B | A) Pr (A) for random events (sets) A and B. In many
cases, the set a mainly contains the input data information and the set a′ the relations
between X and Y, i.e. the model information, and further, updating data. The first
density on the right-hand side of equation (1) is therefore sometimes called the model
prior and the second one the (data) prior or input density although the different kinds of
information cannot always be strictly separated. The sets a and a′ need not be disjoint.
The output density of Y on the combined information a and a′ is the density of interest.
It is also called the posterior and is obtained from equation (1) by a marginalization:

fY(ηηη | a, a′) =

∫
fX,Y(ξξξ, ηηη | a, a′) dξξξ =

∫
fY(ηηη | X = ξξξ, a′) fX(ξξξ | a) dξξξ . (2)

Some important required formulas are derived in the following from the posterior by
application, together with equation (1), to some particular model priors fY(ηηη | X =
ξξξ, a′) in the integrand. These densities represent the model relations, which form a′ and
have to be observed between the physical quantities involved (and the corresponding
estimators). Model relations Mi(X,Y) = 0 or ≥ 0 are considered. They may also depend
on data contained in the information sets. The model priors are expressed by Ci δ(Mi)
for Mi(ξξξ, ηηη) = 0 or CiH(Mi) for Mi ≥ 0 with suitable constants Ci. If there are several
model relations to be observed in a particular case, then the corresponding priors must
be multiplied to form the total model prior. The priors considered are based on the
Heaviside unit step function H(t) = 1 (t ≥ 0) and H(t) = 0 (t < 0). The derivative
δ(t) = dH(t)/dt is called the Dirac delta function. It has the properties δ(t) = 0 (t 6= 0)
and

∫
R δ(t)g(t) dt = g(0) or = 0 for any function g(t) and any region R if 0 ∈ R or 0 /∈ R,

respectively. δ(t) and H(t) are the density and the distribution function of a random
variable, respectively, which can only apply the value t = 0 with the probability 1. t may
also be a vector. See also subsection 5.4.

The dependence of the measurand Y on several input quantities X is expressed by the
model equation M = Y −G(X) = 0 or Y = G(X). The input density fX(ξξξ | a) together
with the model prior fY (y | X = ξξξ, y = G(ξξξ)) = C δ(y − G(ξξξ)), where the information
a′ is formed by the relation y = G(ξξξ), then yield according to equations (1) and (2) the
posterior

fY (y | a) =

∫
δ(y −G(ξξξ)) fX(ξξξ | a) dξξξ ; FY (y | a) =

∫
H(y −G(ξξξ)) fX(ξξξ | a) dξξξ . (3)
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C = 1 is obtained by normalization. The model function G may also depend on the
information a, for instance, on the uncertainties involved in spectrum unfolding. Equa-
tion (3) is called the Markov formula. It is the well-known, basic equation of distribution
propagation [26] or transformation from X to Y in probability theory.

Particular estimates y of the measurand Y may be negative when obtained from meas-
urement data or generated by MC, but only the estimates y ≥ 0 are possible true values
of the non-negative measurand. In most cases, this knowledge is not taken into account
in a and, thus, then requires an update. This is done by introducing the additional
model relation M ′ = Y ≥ 0 and the corresponding model prior fY (y | y ≥ 0) = C H(y),
which has to be multiplied by the delta function in equation (3) to form the total model
prior. However, H(y) does not depend on ξξξ and can thus be moved to the front of the
integral. In this way, the posterior

fY (y | a, y ≥ 0) = H(y) fY (y | a) / I0 ; I0 =

∫ ∞
0

fY (y | a) dy = 1− FY (0 | a) (4)

of the possible true measurand values on the combined information easily follows from
equation (3). The normalization constant C = 1/I0 is obtained. See also the paragraph
between equations (8) and (9) for a derivation of equation (4) from the principle of
maximum entropy (PME).

Other formulas, better suited for MC application than equation (3), follow from equa-
tions (3) and (4), for example,

FY (y | a, y ≥ 0) =
1

I0

∫
R
fX(ξξξ | a) dξξξ ;

R = {ξξξ | 0 ≤ G(ξξξ) ≤ y} ; I0 =

∫
G(ξξξ) ≥ 0

fX(ξξξ | a) dξξξ . (5)

2.4 Information modification

It may be asked why the condition y ≥ 0 is not taken as included in the information
set a from the beginning but is later added to form fY (y | a, y ≥ 0). The reason is that
a may or should contain a primary estimate y0 of the measurand and the associated
standard uncertainty u(y0), both are obtained, as a first step towards the characteristic
values, from an evaluation of measurements according to GUM [2] where the condition
y ≥ 0 is in most cases not taken into account and y0 may become negative. Then (and
only then), the condition must subsequently be observed. The model function G can be
used to determine the primary estimate y0 = G(x0) from the available data x0 of the
input quantities X. A primary estimate y0 is also needed for the decision on whether
or not the radiation effect in question, quantified by the measurand Y , is recognized
as present, for instance, the radiation of a measured, possibly radioactive sample. This
decision has to be made by comparing y0 with the decision threshold y∗ (see subsection
4.4).

Unfortunately, not all the necessary elements of the set a are available in the situation
where the decision threshold and the detection limit are to be determined. For instance,
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the result of a gross-effect radiation measurement is missing in this case since the decision
threshold and the detection limit, as characteristics of the measurement procedure,
should be known before the first gross-effect measurement is carried out. A suitable
true measurand value ỹ ≥ 0 is then assumed for an indirect compensation, and a is
replaced by ã(ỹ). This function transforms the present information for a chosen ỹ. Thus
this means a modified a, which would be obtained from the measurement to be carried
out if the true measurand value ỹ is assumed. This assumed true measurand value ỹ is
neither the true measurand value itself nor an estimate of it but can freely be chosen.
The function ã(ỹ) is a generalization of the uncertainty function ũ(ỹ) introduced in ISO
11929 [1]. At least a reasonable approximation of ã(ỹ) must be available, but it is not
easy to establish this function in practice.

If the gross-effect value, say x1, of a radiation measurement is not available, y is replaced
by ỹ in the model equation y = G(x) and this equation is solved for x1 resulting
in x1 = L(ỹ, x2, . . .) with some function L. This x1 is then used to form ã(ỹ) and
the density fY (y | ã(ỹ)) in analogy to a and fY (y | a), respectively. For instance, if
a = {x1, x2, . . .}, then ã(ỹ) = {L(ỹ, x2, . . .), x2, . . .}. Or a = {y0, u(y0)} in ISO 11929
[1], with y0 not yet available, becomes ã(ỹ) = {ỹ, ũ(ỹ)}. Not only x1 but also the whole
x can be influenced by ỹ as in the case of spectrum unfolding. For more examples, see
reference [25]. Alternatively, x1 can be obtained more easily without the function L
by varying x1 until G(x) = ỹ with an assumed ỹ (for instance, ỹ = 0 for the decision
threshold). This can be carried out iteratively, e.g., by the regula falsi.

The measurand of one of the simplest realistic radiation measurements is a net count rate
Y = Rn = G(X1, X2) = X1 −X2 given as the difference of a gross count rate X1 = Rg

with the estimate x1 = ng/tg and a background count rate X2 = R0 with the estimate
x2 = n0/t0 (see also subsection 5.7). Independent Poisson processes are assumed for
counting ng and n0 pulses during the measuring times tg and t0, respectively. Then, y0 =
x1 − x2 = ng/tg − n0/t0 and u2(y0) = u2(x1) + u2(x2) = x1/tg + x2/t0 = ng/t

2
g + n0/t

2
0

are obtained. However, ng is not available before the gross effect measurement is carried
out. Instead, y0 is replaced by the assumed ỹ and the expression for y0 is solved for x1
leading to x1 = ỹ + n0/t0 and, finally, by inserting x1 into the expression for u2(y0) to

ũ2(ỹ) =
ỹ + n0/t0

tg
+
n0
t20

. (6)

Accordingly, ũ2(ỹ) is a linear function of ỹ. In other cases often encountered, also terms
with ỹ2 occur which are caused by calibration or similar influence factors [1].

It is often sufficient to use as an approximation of the function ã(ỹ) an interpolation of
the sets aj belonging to the results yj from some previous measurements of the same kind
carried out on samples with differing activities, but in other respects as far as possible
under similar conditions. One of these measurements can be a background or blank
measurement with yj = 0. The measurement just carried out can be taken as another
one with yj = y0. The values yj serve as the interpolation abscissas of the variable ỹ.
Since ũ2(ỹ) is often a second-order polynomial of ỹ, three interpolation abscissas will
be sufficient in such cases.
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3. Establishing distributions

3.1 PME and Bayes and expansion theorems

In order to establish the posterior of Y needed for the calculation of the characteristic
values, the input density fX(ξξξ | a) according to equations (3) to (5) has to be formed.
This task is described in detail in the GUM supplement [26] and in the Bayesian theory
of measurement uncertainty [14, 15]. A short introduction will thus suffice here.

The density f = fZ(ζζζ | a) of any random variables Z can in general be obtained from
any actually available information a by using the principle of maximum (information)
entropy (PME) [10–15] or other tools of probability theory such as the Bayes theorem or
the expansion theorem. For a derivation of the PME, see appendix A.2. The PME is a
fundamental principle added to BSt. It plays a part similar to other famous variational
principles in physics such as that of extremal action. Its importance should therefore
not be underestimated. The Bayes and expansion theorems can be applied to include
known frequency or parameter distributions, respectively. If possible and suitable, the
above-mentioned methods can be applied alternatively, in combination, or in succession.
If two of them are in fact alternatively applicable in a particular case, then their results
f must be identical provided that equivalent information is analogously and correctly
taken into account (see appendix A.3).

The PME consists in choosing as f = fZ(ζζζ | a) the most likely density by taking
into account relevant information available as so-called constraints and maximizing the
entropy

S = −
∫
R
f ln(f/f0) dζζζ = max (7)

by applying a variational method. R is the region of all possible values ζζζ of Z (where
f0 > 0). The function f0 = f0,Z(ζζζ) is the prior, the density of Z based on the infor-
mation already known and included before the new information a, represented by the
constraints, became available. If nothing was known before, then the prior is uniform
according to the Bernoulli principle (see subsection 5.5). Only this case is assumed
by the PME application of the GUM supplement [26 (6.3.2)]. It is stressed once more
that this solution of the PME depends essentially on the—nearly always incomplete—
information available and taken into account. There is thus no “true” distribution in
BSt.

If constraints E (gi(Z)) = di have to be met by given, linearly independent functions
gi(Z) and data di, then the maximization can be carried out by the Lagrange method
(see any textbook on variational methods, e.g., reference [32]) and results for ζζζ ∈ R in

fZ(ζζζ | a) = C f0,Z(ζζζ) exp
(
−
∑
i

µigi(ζζζ)
)
. (8)

The density f = fZ(ζζζ | a) vanishes outside R. The normalization constant C and
the Lagrange multipliers µi have to be determined from the normalization condition
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of a density and the constraints. The normalization condition can also be taken as a
constraint with i = 0; g0(Z) = 1; d0 = 1 and C = exp(−µ0).

If there are no constraints, then f = Cf0 inside R and f = 0 outside R. This leads to
equation (4) with Z = Y ; ζζζ = y; R = {y | y ≥ 0}; f = fY (y | a, y ≥ 0), and the prior
f0 = fY (y | a), which is taken as already known and updated by equation (4) for the
condition y ≥ 0.

If, in particular, Z = X and only the expectation E (X) = x and the non-singular
(positive definite) uncertainty (covariance) matrix Ux associated with x are known and
taken into account such that a = {x,Ux} and, moreover, the prior is uniform and R is
the whole ν-dimensional X-space, then a Gaussian density (GD) f is obtained:

fX(ξξξ | x,Ux) =
exp

(
− 1

2 (ξξξ−x)>U−1x (ξξξ−x)
)√

(2π)νdetUx
. (9)

In this case, fY (y | a) according to equation (3) is also a GD if G(X) is a linear function.

The also important Bayes theorem in the form

fZ(ζζζ | v) fV(v) = fV(v | ζζζ) f1,Z(ζζζ) (10)

follows from the second equation of the general product rule below equation (1) and
can be applied if a (frequency) density fV(v | ζζζ) of random variables V with values
v, being parts of the information a, and the prior f1 = f1,Z(ζζζ) are available from
previous measurements, experience, or reasonable assumptions. Since v is fixed, fV(v)
is a constant 1/C. The subscript 1 in equation (10) only indicates that the prior f1 can
differ from f0 in the PME according to equations (7) and (8). Hence it follows

fZ(ζζζ | v) = C fV(v | ζζζ) f1,Z(ζζζ) (11)

where C acts as the normalization constant. This density can be taken as the final f if
no further information such as R or constraints has to be included. Otherwise, it must
be used as the prior f0 of the PME. In equation (11), the factor C fV(v | ζζζ), taken as a
function of ζζζ but not as a density of V, is called the likelihood. It is an analogue to the
factor C exp(. . .) of equation (8).

An example of the likelihood is C times the Poisson frequency distribution fV(v | ζζζ) =
pN (n | %), taken as a function of %, with the counting variable V = N , its recorded
value v = n, and the expectation E (N) = %t. Here, ζζζ = % is the possible true value
of the count rate Z = R to be determined and t is the duration of the measurement.
The density fZ(ζζζ | v) = fR(% | n) becomes a gamma density if, for instance, the prior
f1,Z(ζζζ) = fR(%) = H(%) is applied since % ≥ 0 (see also equation (4) and subsection
5.7). Although pN (n | %) = Pr (N = n | R = %) is not a probability density but a
probability function since N is a discrete random variable, this does not matter in the
Bayes theorem.

The expansion theorem, also called the theorem of total probability, reads

f2,Z(ζζζ) =

∫
fZ(ζζζ | w) fW(w) dw . (12)
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It follows from the general probability expansion rule Pr (A) =
∑
i Pr (A | Bi) for

random events (sets) A and alternative events Bi if exactly one of the Bi occurs in each
trial. Its output density f2 can be taken as the final f if the densities of the integrand,
which depend on values w of parameters W, are given, for instance, as results from the
PME or as priors. fW(w) can also express a density of weights assigned to the values
w. The expansion theorem can be obtained by a marginalization similar to equations
(1) and (2).

3.2 Additional remarks

There are cases where an update has to be made for new, additional information on the
measurand. This can be done in several ways depending on the kind of information:

(a) The model equations can be refined by introducing new input quantities Xi. e.g.,
influence quantities, if the information refers to these quantities.

(b) The PME can be applied if the new information refers to the region R of the possible
true values of the measurand or to the constraints. Then, the old density f has to be
used as the prior f0.

(c) A distribution of a quantity Z, e.g., a prior, which will be more reasonable than a first
one assumed such as a uniform prior over an interval, can be established by Bayesian
updating [12] if a pool of comparable data zk (k = 1, . . . ,M) from previous, similar
measurements is available. The improved distribution is then obtained, for instance, by
fitting a suitably assumed function to the data [33]. These data, ordered by magnitude
and renumbered as z(k), can also be used like MC samples y(k) [25]. A suitably assumed
inverse distribution function fitted to the M points (k/M, z(k)) can be advantageous
(see appendix B).

(d) If a new prior, possibly improved according to (c), of the measurand or of a parameter
or a distribution of weights has to be taken into account, then either the product rule
according to equation (1) or the Bayes or expansion theorems according to equations
(11) and (12) can be applied.

If the ν input components Xi of X are known to be independent random variables or
if nothing is known about their mutual dependence, then fX(ξξξ | a) =

∏ν
i=1 fXi

(ξi | ai)
with a = {a1, . . . , aν}. In multi-channel spectrum unfolding, all the fXi

(ξi | ai) are
gamma distribution densities of the count rates Xi = Ri and ξi = %i with ai = ni.

According to the central limit theorem of probability theory, the posterior fY (y | a)
becomes in most cases, but with some exceptions, an approximation of a GD even
if fX(ξξξ | a) is non-Gaussian. But the expectations x and the uncertainty matrix Ux
of X must exist and none of the ν input quantities Xi should strongly dominate by
uncertainty. There should be more than only a few dimensions ν, but ν need not neces-
sarily be a large number. However, if ν tends to infinity as in multi-channel spectrum
unfolding, then the expectation E (Y ) and the variance Var (Y ) should remain finite.
Otherwise, if E (Y )→∞ or Var (Y )→∞ or 0, then a standardization by the substitu-
tion Y ′ = (Y − E (Y ))/

√
Var (Y ) can help to see whether or not an approximation of

a standardized GD is involved. Moreover, the model function G(X) must be sufficiently
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linear in a neighbourhood of x determined by the condition (ξξξ − x)>U−1x (ξξξ − x) <≈ ν
(second-order loss function, see subsection 5.6). If all these conditions are (nearly) met
and, accordingly, fY (y | a) is (approximately) a GD, then ISO 11929 can be applied
directly. This is an important result for many cases, especially for spectrum unfolding.
It also shows the prominence of the GD in measurement evaluation (see also subsection
5.3).

Nevertheless, one should be cautious. If fY (y | a) can indeed be well approximated by
a GD, this applies mainly to the bulk of the density, but not necessarily to the tails,
which play a prominent part in the important integrals I4 to I7 used for the definitions
of the characteristic values since the probabilities α, β, and γ are commonly specified as
small numbers. The same applies to the integral I3 if ŷ � u(ŷ). (For the integrals, see
also subsection 5.7 below equation (34). The quantities used in the present paragraph
are introduced in section 4.)

There are cases where the PME seems to have no solution [34]. Let, for instance, an
estimate x (expectation) and the associated standard uncertainty u(x) (standard devi-
ation) be given for a measurand X known to be valued in some interval between a and
b > a. If x is not contained in the interval or u(x) > b − a, then, indeed, there is no
solution from the PME for the density f = fX(ξ | x, u(x), a, b) to be determined. What
does this mean? It merely indicates that there is something wrong with the information.
The information is contradictory or badly interpreted. This should give an incentive to
carefully inspect the measurement and the data evaluation in order to find the reason
for the inconsistency. The first question should be: How are x and u(x) obtained from
what information? Suppose, for instance, that x and u(x) are determined from measure-
ment data vi according to GUM [2] as the arithmetic mean and the empirical standard
deviation (type-A evaluation of measurement uncertainty [28 (2.28)]), respectively. The
interval information a and b has not yet been used. Thus, x and u(x) do not belong to
the density f but to a density f0 = fX(ξ | x, u(x)) ! GUM does not provide this density
but f0 can be reconstructed by the PME with a uniform prior and turns out to be the
GD f0 = exp(−(ξ − x)2/(2u2(x)))/

√
2πu2(x). This density must now be subsequently

updated for the additional interval information to form the final density f . This can
again be done by the PME, but f0 must now act as the prior since it represents the
knowledge already taken into account. Then, equation (7) has to be solved for f with
Z = X; ζζζ = ξ and R = {ξ | a ≤ ξ ≤ b} and with the normalization condition only. Equa-
tion (8), where the sum now vanishes, yields f = Cf0 for ξ ∈ R and f = 0 elsewhere.
Thus, f0 is truncated at a and b and renormalized to form f . There is always a solution
f . Naturally, with f and according to section 4, the “best” estimate now turns out to
be x̂ = E (X) 6= x with a ≤ x̂ ≤ b and u(x̂) =

√
Var (X) ≤ min(u(x), b−a). All possible

coverage intervals are contained in the interval between a and b. The prior f0 intro-
duced in the PME here reasonably eliminates the difficulty. The example treated here
is similar to subsequently taking into account the condition y ≥ 0 for a non-negative
measurand Y as is shown below equation (8). In this case, a = 0 and b =∞.

4. Definitions of the characteristic values

4.1 Preliminary remarks

In many cases, the functional values of the estimator densities cannot be explicitly
calculated for particular argument values y, since the analytic formulas or algorithms

11



required for solving the complicated integrals in equation (3) are often missing. Only
argument values can be obtained by MC sampling from a preceding probability analysis
according to references [14, 15, 26]. This is the reason why the following integrals of
the densities then need to be calculated by MC and not more easily by the Simpson or
similar numerical integration methods [35, 36] (see also subsection 6.5).

The preceding paragraph does not apply to ISO 11929 [1], where the estimator densities
are taken as Gaussian ones and thus MC need not be used. However, the following more
general mathematical definitions of the characteristic values are stipulated in accordance
with ISO 11929.

The best estimate of the measurand, the standard uncertainty associated with this best
estimate, and the lower and upper limits of the coverage interval are defined in the
following by means of moments and quantiles of the densities fY (y | a) and fY (y | a,
y ≥ 0). The definitions of the decision threshold and the detection limit are similarly
based on the density fY (y | ã(ỹ)) with different assumed true measurand values ỹ. The
p-quantile of a density fZ(ζ) is the upper integral limit q in the equation

∫ q
−∞ fZ(ζ) dζ =

FZ(q) = Pr (Z ≤ q) = p with the given probability p. The particular probabilities α and
β of the false positive and negative decisions, respectively,—formerly called the errors
of the first and second kind—and the coverage probability (1− γ) used in the following
have to be specified. For I0, see equation (4). For illustrations of the densities and the
characteristic limits, see figures 1 and 2.

Although the integrals of equations (4) and (13) to (16) refer to the density fY (y | a,
y ≥ 0), only the function fY (y | a) is needed for numerical calculations.

It is pointed out again that the best estimate, the standard uncertainty and the limits
of a coverage interval are characteristic values of a possibly radioactive sample whereas
the decision threshold and the detection limit are those of the measurement procedure
and do not depend on the sample radiation.

4.2 Best estimate and standard uncertainty

The best estimate ŷ of the measurand Y is the expectation of the density fY (y | a, y ≥ 0):

ŷ = E (Y | a, y ≥ 0) = I1 / I0 ; I1 =

∫ ∞
0

y fY (y | a) dy . (13)

The standard uncertainty u(ŷ) of the measurand associated with ŷ is the standard
deviation of the density fY (y | a, y ≥ 0):

u(ŷ) =
√

Var (Y | a, y ≥ 0) =
√
I2 / I0 − ŷ2 ; I2 =

∫ ∞
0

y2 fY (y | a) dy . (14)

The measurement uncertainty u(y) associated with an arbitrary estimate y is in gen-
eral given by u(y) =

√
E ((Y − y)2) [14, 15] where E ((Y − y)2) is the non-central

second-order moment with respect to y. Accordingly, u(y) assumes with y = E (Y ) its
minimum value, the standard deviation

√
Var (Y ) of Y , also called the standard un-

certainty [28 (2.30)]. The expectation E (Y ) is therefore taken as the “best” estimate ŷ
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E (Y | a)
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u(ŷ)
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(1) fY (y | a)

(2) fY (y | a, y ≥ 0)

γ/2
γ/2

fY

Figure 1: Illustration of the best estimate ŷ (expectation of density (2)) of a non-negative
measurand Y with the associated standard uncertainty u(ŷ) (standard deviation), and
the limits y/ and y. of the probabilistically symmetric coverage interval that covers the
true measurand value with the probability 1−γ. The dashed line represents the density
(1) of the possible true measurand values y, based on the available information a (from
the measurement evaluated according to GUM [2]). By adding the condition y ≥ 0 to
a, the density (1) is truncated at y = 0 and renormalized to form the bold-face density
(2). This leads to y/ ≥ 0.

of the measurand Y and, together with the associated standard uncertainty u(ŷ), as
the (complete) measurement result [28 (2.9)]. For other proposals of the best estimate,
see subsection 6.2. For the reason why uncertainty is defined by a second-order loss
function, see subsection 5.6.

4.3 Coverage intervals

The lower limit y/ of the coverage interval is the (γ/2)-quantile of the density fY (y |
a, y ≥ 0):

FY (y/ | a, y ≥ 0) = γ/2 = I3 / I0 ;

I3 =

∫ y/

0

fY (y | a) dy = FY (y/ | a)− FY (0 | a) . (15)

The upper limit y. of the coverage interval is the (1− γ/2)-quantile of the density
fY (y | a, y ≥ 0):

1− FY (y. | a, y ≥ 0) = γ/2 = I4 / I0 ;

I4 =

∫ ∞
y.

fY (y | a) dy = 1− FY (y. | a) . (16)
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The coverage interval [26 (3.12), 28 (2.36)] between the limits according to equations
(15) and (16) contains the true value of the measurand with the specified coverage prob-
ability (1−γ) [26 (3.13), 28 (2.37)]. It is identical with the (Bayesian) confidence interval
of the references cited. However, there is a great contrast to the merely analogous confi-
dence interval in CSt where, for example, the confidence level, which corresponds to the
coverage probability in BSt, cannot be understood as a probability. The limits of the
coverage interval are sometimes also called the credible limits. The coverage interval as
defined above is probabilistically symmetric [26 (3.15)] as in common practice and ISO
11929 [1] for historical and practical demands. Other stipulations are possible. For the
shortest coverage interval, see subsection 6.3 and appendix B. If, for instance, ŷ in rare
cases happens not to be contained in the coverage interval, then the median m, defined
by FY (m | a, y ≥ 0) = 1/2 and, thus, always contained in the coverage interval, may be
taken as a reasonable estimate of the measurand, but with a larger associated uncer-
tainty u(m) =

√
E ((Y −m)2) > u(ŷ) and other shortcomings (see subsection 6.2). If

the true value 0 of the measurand is required to be contained in the coverage interval if
y0 is small, then y/ = 0 and y. defined by FY (y. | a, y ≥ 0) = 1− γ could be stipulated
(but see subsection 6.3 and appendix B). However the coverage interval is stipulated,
it does not enlarge the knowledge of the measurand since all the information available
and taken into account is already represented by the density fY (y | a, y ≥ 0).

4.4 Decision threshold and detection limit

The decision threshold y∗ is the (1− α)-quantile of the density fY (y | ã(ỹ = 0)) for the
assumed true value ỹ = 0 of the measurand:

1− FY (y∗ | ã(ỹ = 0)) = I5 =

∫ ∞
y∗

fY (y | ã(ỹ = 0)) dy = α . (17)

The detection limit y] is the assumed true value of the measurand if the decision thresh-
old y∗ is the β-quantile of the density fY (y | ã(ỹ = y])):

FY (y∗ | ã(ỹ = y])) = I6 =

∫ y∗

−∞
fY (y | ã(ỹ = y])) dy = β . (18)

Equations (17) and (18) also read I5 = 1− P (0) = α and I6 = P (y]) = β, respectively,

with the function P (ỹ) = FY (y∗ | ã(ỹ)) =
∫ y∗
−∞ fY (y | ã(ỹ)) dy. Possibly, equation

(18) has no unique solution y] or even no solution at all. Therefore, a more general
mathematical definition of the detection limit is needed and could read as follows: The
detection limit is the minimum true value y] for which the suitability condition P (ỹ) ≤ β
is met for all ỹ ≥ y]. If there is no solution, then, formally, y] =∞ is set. In this case,
the measurement procedure needs to be improved or modified. P (ỹ) is assumed to be a
continuous function. For more about this function, see the paragraph of equation (19).

The decision threshold y∗ and the detection limit y] should be known before a meas-
urement is carried out on a sample to be tested for ionizing radiation. Thus, they
are characteristics of the measurement procedure and do not depend on the particular
sample. If y0 > y∗ for a primary estimate y0 from a measurement, then it is decided
that the radiation effect in question, quantified by the measurand Y , is recognized as
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y∗ y]

0 y

fY (y | ã(ỹ))

β α

ỹ = 0 ỹ = y]

Figure 2: Illustration of the decision threshold y∗ and the detection limit y] of a non-
negative measurand Y . The figure shows the densities fY (y | ã(ỹ)) of possible measurand
estimates y from a measurement if the true values (expectations and parameter values)
ỹ = 0 and ỹ = y] of Y are assumed. If y0 > y∗ for a particular primary estimate y0 from
a measurement, then it is decided that the radiation effect quantified by Y is recognized
as present. The areas α and β below the densities on the right-hand and left-hand side of
the abscissa y∗ are the probabilities of false positive and negative decisions, respectively.
The area α “covers” a piece of the line for ỹ = y].

present. This decision is wrong and called a false positive decision if the radiation effect
is actually absent. This case is assumed by choosing the true measurand value ỹ = 0.
Its probability α is expressed by equation (17) (see figure 2). ISO 11929 [1] requires the
best estimate ŷ, the associated standard uncertainty u(ŷ), and the limits y/ and y. of
the coverage interval to be determined only if y0 > y∗.

Notice that the condition y ≥ 0 is not involved in the definitions of the decision threshold
y∗ and the detection limit y] according to equations (17) and (18), respectively, since y0,
which has to be compared with y∗, is taken as obtained directly from the measurement
data evaluation according to GUM [2] where the condition is ignored. Therefore, y∗

must also be defined without the condition. This also applies to y] since it depends on
y∗. For a possible, alternatively defined decision threshold y∗∗, see subsection 6.4.

If y] ≤ yr with a guideline value yr specified for scientific, legal or other demands, then
it is decided that the measurement procedure is suitable for the intended measurement
purpose. (For exceptional values of y], see subsection 5.10.)

Assume a present radiation effect by choosing any true measurand value ỹ > 0. Then
the decision that the radiation effect is recognized as absent—because of y0 ≤ y∗ —is
wrong and called a false negative decision. The function P (ỹ) defined below equation
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(18) is the probability of this wrong decision. It must meet the suitability condition
P (ỹ) ≤ β for all ỹ ≥ y] (see figure 2) if y0 > y∗, i.e. in the case of the decision that the
radiation effect is recognized as present. For ỹ = yr ≥ y], in particular,

I7 = P (yr) =

∫ y∗

−∞
fY (y | ã(ỹ = yr)) dy ≤ β . (19)

Vice versa, if P (ỹ) ≤ β for all ỹ ≥ yr, then y] ≤ yr since y] is a minimum value with
respect to the suitability condition. Hence it follows that the detection limit y] is not
needed if only the suitability decision has to be made with a given yr. If P (ỹ) is known
to decrease monotonely, then the condition P (yr) ≤ β is easier to test than y] ≤ yr and
is sufficient for the suitability decision.

Since ỹ is an assumed true measurand value, the expectation of the density fY (y | ã(ỹ))
should meet the condition

E (Y | ã(ỹ)) = ỹ (20)

in analogy to equation (13). Moreover, Var (Y | ã(ỹ)) = ũ2(ỹ) is the squared uncertainty
function ũ(ỹ) used in ISO 11929 [1] and similar to equation (14).

The definitions given in equations (13) to (18) are in accordance with ISO 11929 [1],
where only Gaussian densities are used for fY (y | a) and fY (y | ã(ỹ)). These densities
follow exactly from the PME (see section 3) if, according to GUM [2], only their expec-
tations y0 and ỹ and standard deviations u(y0) and ũ(ỹ), respectively, are taken into ac-
count as constraints and form the information sets a = {y0, u(y0)} and ã(ỹ) = {ỹ, ũ(ỹ)}.

5. Justifications against criticisms

5.1 Denoting distributions

The probability density of any random variable Z is denoted by fZ(z) according to DIN
13303 [30] in reference [25] and in the present paper, but not by f(z) as usually preferred.
This has been criticized, but it arises from a simple reason. In fact, the more informative
symbol fZ(z) for a density of a random variable Z is often abbreviated by the simpler
symbol f(z) in the literature for brevity and convenience. But f(z) is a dangerous
symbol. It is useless in general since Z and its value z are identified. Consequently, f(t)
would be the density of a second random variable T but not fZ(t) where the functional
argument z is merely replaced by t. This has to be done, for instance, in integrals such
as FZ(z) =

∫ z
−∞ fZ(t) dt. By dropping Z, the result F (z) =

∫ z
−∞ f(t) dt would become

erroneous. Thus, if one uses f(z) as a convenient abbreviation—as is also sometimes
done in the present paper—then one must explicitly explain the exact meaning of this
symbol.

The more general symbol fZ(z | a) is introduced for the (conditional) probability den-
sity of any random variable Z with values z and, as the condition, with the information
a taken into account. The information set a summarizes all the data, conditions, as-
sumptions, and other relevant information given or obtained from measurements and
other sources. Naturally, the data can also include values of any other random variables,
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for instance, in the form V = v or, for short, v alone as is usual in probability theory.
This form is explicitly required in the Bayes theorem according to equation (11).

5.2 Applying Bayesian statistics

Why is Bayesian statistics (BSt) exclusively used as a basis in uncertainty theory and in
the field of characteristic values in radiation measurement, particularly, in ISO 11929?
Several attempts were made in the past before 1990 to apply conventional, frequency-
based statistics (CSt) to measurement uncertainty, but in vain. Finally, the ISO com-
mittee working on this task was disbanded. The reason is that there are nearly always
uncertain physical quantities which must be taken into account, however, do not behave
randomly in repeated or counting (radiation) measurements and thus cannot be treated
by CSt, for instance, influence quantities causing systematic deviations. In parallel,
GUM was prepared, adopted, and first published in 1993 although it offers a theoreti-
cally unsatisfying, but practical mixture of type-A (CSt) and type-B (BSt) methods to
obtain uncertainty components. The theory of measurement uncertainty [14] based en-
tirely on BSt was published in 1992, but was too late to be included in GUM. However,
BSt is used throughout as a unique statistical basis in the current revision of GUM.

5.3 Using Gaussian distributions

It was said that using the (truncated) Gaussian density (GD) nearly exclusively in ISO
11929 is not general enough. This may hold true in rare cases. But the GD plays an
exceptional, dominant part since it is exact according to the PME if, as is often the
case, only y0 and u(y0) are available from GUM as input information. In many other
cases, GD is the limiting distribution for long durations of measurement (see below
equation (34) and reference [25]). And it is nearly always a good and very practical
approximation which requires only a minimum of computational effort to obtain the
characteristic values. In a revised ISO 11929, general distributions could also be treated
according to reference [25] and section 4, if really necessary in practice. However, this
would require a considerably greater modelling and computing effort by applying the
Monte Carlo method (MC).

Another reason for the great importance of the GD is the central limit theorem of prob-
ability theory. This theorem states that the measurand can in most cases be assessed,
at least approximately, by using a GD if the measurand depends sufficiently linearly
on several input quantities in the data region of interest. The parameters of the GD
can be obtained already by the methods provided by GUM. The truncated GD can be
accepted as a suitable approximation even in cases of poor measurement, for instance,
in the simplest case of radiation measurement under low-level circumstances where the
measurand Y is a net count rate Rn to be obtained as the difference of a gross count
rate Rg and a background count rate R0 and if only very small numbers ng and n0 of
radiation events were recorded from assumed Poisson distributions (see subsection 5.7
and reference [25]).

Finally, it is stressed that using the GD throughout in ISO 11929 is in any case not an
inadmissible simplification but a suitable, pragmatic approximation for practice.
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5.4 Using Dirac and Heaviside functions

The usage of the Dirac delta function δ(t) and the Heaviside unit step function H(t)
in the Bayesian theory of measurement uncertainty [14–18], in reference [25] and in
the present paper, has been criticized. However, they are convenient auxiliary functions
and suitable tools often applied in theoretical physics. They are used to express and
introduce constraints, for instance, model relations. Their main properties and usage
are described in subsection 2.3.

They can also be taken as densities of a random variable which can assume the value
t = 0 only or the values t ≥ 0 only with a uniform density, respectively. Thus, they are
used and treated like other densities, for instance, as model priors in equations (2) and
(3). They can also help to change the representation of a distribution since there are,
for instance, the relations

fZ(z) =
∑
i

pZ(zi) δ(z − zi) ; (21)

FZ(z) =
∑
i

pZ(zi)H(z − zi) (22)

for a discrete random variable Z, which can only assume the values zi with the proba-
bilities pZ(zi).

Moreover, these tools are applied to conveniently represent alternative notations if suit-
able. For instance, if some function L(t), given by a particular arithmetic expression g(t),
is known to vanish for negative t, i.e. L(t) = 0 for t < 0, then the following notations
are equivalent:

L(t) =

{
g(t) ; (t ≥ 0)

0 ; (t < 0)

}
= H(t) g(t) ; (23)

∫ ∞
−∞
L(t) dt =

∫ ∞
0

L(t) dt =

∫ ∞
−∞
H(t) g(t) dt ; (24)

L(t′) =

∫ ∞
−∞

δ(t− t′)L(t) dt . (25)

Another auxiliary function U(t;R) = 1 for t ∈ R and = 0 for t /∈ R, which is uniform in
a region R, can formally be used for any function L(t) as a tool to avoid integral limits
since∫

R
L(t) dt =

∫
U(t;R)L(t) dt . (26)

If L(t) = fT(t) is the density of a random variable T, then the integrals in equation
(26) are the probability of T ∈ R or the expectation E (U(T;R)).
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5.5 PME and Bernoulli principle

ISO 11929 [1], reference [25] and the present paper are based on the well established
Bayesian statistics in combination with the PME [10, 11], which is used for obtaining
probability distributions. Bayesian statistics and PME were first applied in combination
to measurement uncertainty in reference [14] in order to form a unique theoretical basis
for GUM [2].

The PME is used as a necessary supplement to other methods such as the Bayes theorem.
It is taken as a fundamental principle although it can also be derived (or, at least,
made plausible) by limiting processes via the multinomial distribution by using the
deeper Bernoulli principle: “Assign same probabilities to equally likely states of the
physical system in question” (for instance, probability 1/2 to both sides of a coin to
be tossed) (see reference [15] and appendix A.1). This is the classical understanding of
probability as introduced by Bernoulli and Laplace. The Bernoulli principle can help
to form the necessary prior f0 in equation (7) at the beginning with a minimum of
primary physical information about the system, e.g., natural laws, geometry, invariances
and other circumstances. “Equally likely” should be understood in a very wide sense
as a symmetry of the system. Symmetries are very important in theoretical physics.
Accordingly, two different states of the system should be taken as equally likely if there
is a physical operation which transfers one of the states to the other state without any
essential physical change (for instance, a 180◦ rotation around an axis in the plane of
the coin to be tossed). For “non-informative” priors, see references [37] and [38].

One can say that there are two schools using Bayesian methods:

School A very strictly and exclusively uses the Bayes theorem according to equations
(10) and (11) for establishing probability distributions by trying to obtain the likeli-
hood C fV (v | ζ) (as a function of ζ) and the prior f1,Z(ζ) on the right-hand sides of
these equations from available or assumed information. That is acceptable if sufficient
information is present, for instance, from a pool of statistical data from previous meas-
urements. However, that is by no means always the case. Likelihood or prior are often
missing.

School B uses the same Bayesian methods as school A but also the PME according to
equation (7) as an essential additive to pure Bayesian statistics. Strict statisticians of
school A sometimes call school B “non-Bayesian” and use the adjectives “speculative”
and “highly questionable” for the PME.

The PME is indeed a more pragmatic, more physical tool than a mathematical or
statistical means to establish probability distributions. It is taken as a fundamental
principle or a postulate such as the famous principle of extremal action in physics.
It is well-established and has been successfully applied in many fields of statistical
physics such as quantum statistics, statistical thermodynamics (by Gibbs even in the
19th century) and image processing [12]. Moreover, some presently and formerly valid
(inter)national standards, e.g., GUM [2], its supplement 1 [26], ISO 11929-7 [22] and
DIN 25482-10 [23] are in effect based on the PME.

19



If there is enough information at hand, then the Bayes theorem may be sufficient to
establish probability densities, for instance, by “Bayesian updating” [12] or other meth-
ods [33]. But in general cases, especially in those of poor or non-statistical information
as often encountered in a single radiation measurement, the PME of school B and the
Bernoully principle are valuable, indispensable tools for the determination of distribu-
tions and characteristic values.

The PME is used in combination with the well-known Bayesian statistics as a necessary
supplement to other methods such as the Bayes theorem. The PME and Bayes theorem
according to equations (7) and (11), respectively, complete one another. The PME is
indispensable if the likelihood needed in the Bayes theorem is not available, as often
happens, or information of uncertain quantities must be taken into account if these
quantities do not behave randomly in repeated or counting measurements or if con-
straints are to be met or only poor or non-statistical information is available. Naturally,
the PME and Bayes theorem must yield the same results if both are really alternatively
applicable in a particular case and equivalent information and conditions are in analogy
and correctly taken into account (see appendix A.3).

5.6 Using second-order loss functions, consistency

A selection of the “best” alternative out of a number of others is often carried out by
extremizing a suitably chosen, problem-dependent loss function, which is a concept of
decision theory [3]. For uncertainty, second-order (quadratic, binomial) loss functions
are used in order to obey consistency in metrology, as is explained in the following.

An example is the selection of the best estimate ŷ of a measurand with an estimator Y by
minimizing the squared uncertainty u2(y) = E ((Y − y)2) associated with some possible
estimate y and taken as the loss function L(y). This minimization L(y) = min leads
to the best estimate ŷ = E (Y ) of the measurand with the associated squared standard
uncertainty u2(ŷ) = Var (Y ), which is the minimum of the chosen loss function (see also
subsection 4.2). Another example is L(y) = χ2 = (x − Ay)>U−1x (x − Ay) = min for
linear fits such as spectrum unfolding. y represents the fit parameter estimates and x,
Ux and A are given data matrices (see, e.g., references [1, 25]).

It was asked why both the above-mentioned loss functions and others in uncertainty
theory, including linear fits, are of second order in y or y, respectively, but not, for
instance, of the form L(y) = E (|Y − y|) for selecting a “best” estimate and defining the
associated uncertainty. The answer to this question is not easy, but is comprehensively
described in reference [39]. Only a short review is given in the following.

Any uncertainty theory should meet at least the following six metrological requirements:
(1) generality, (2) consistency (information conservation), (3) unique statistical basis,
(4) possibility of a critical comparison of different measurement results of the same meas-
urand, (5) protection against large possible measurement deviations, and (6) simplicity,
transparency, practicability, small computing effort.

It appears that only second-order loss functions used to define uncertainty or in fits
including an uncertainty treatment can meet, at least in a linear model approximation
in the data range of interest, the most stringent requirement (2) of consistency. All other
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uncertainty theories proposed in the past came to grief on this very important, but
nearly always disregarded metrological requirement. Consistency means: Let estimates
x and the associated uncertainty matrix Ux of quantities X be used to calculate those
of Y with the model function Y = F(X) and then those of Z with the model function
Z = G(Y). The results for Z must then be identical to those obtained in a different way,
for instance, directly from the data of X with the model function Z = H(X) = G(F(X)).
If, in particular, G is the inverse function of F and, thus, Z = X, then the original data
x and Ux of X must be conserved when calculated via Y to Z [39].

The PME and Bayes theorem are also consistent when connected with independence as
a precondition. This is shown in the following.

If the set V of random variables in the Bayes theorem according to equation
(11) consists of mutually independent subsets V1 and V2, then CfV(v | ζζζ) =
C1fV1

(v1 | ζζζ) ·C2fV2
(v2 | ζζζ) and equation (11) can be split into two similar steps:

f
(1)

Z (ζζζ | v1) = C1 fV1
(v1 | ζζζ) f1,Z(ζζζ) ;

fZ(ζζζ | v1, v2) = C2 fV2
(v2 | ζζζ) f

(1)

Z (ζζζ | v1) . (27)

The outcome of the first step of the split serves as the prior of the second step, which
can also be taken as an update of the first step for new information v2.

Similarly, the PME according to equation (8) allows an analogous split by

f
(1)

Z (ζζζ | a1) = C1 exp
(
−
∑

i
µ
(1)
i g

(1)
i (ζζζ)

)
f0,Z(ζζζ) ;

fZ(ζζζ | a1, a2) = C2 exp
(
−
∑

i
µ
(2)
i g

(2)
i (ζζζ)

)
f
(1)

Z (ζζζ | a1) . (28)

Here, for independence, the multipliers µ
(1)
i and functions g

(1)
i (ζζζ) must only refer to the

density f
(1)

Z , and µ
(2)
i and g

(2)
i (ζζζ) only to the final density fZ.

A crosswise application of equations (27) and (28) is also possible, e.g., in order to form
fZ(ζζζ | v1, a2).

5.7 Counting measurement

The present subsection first deals with a direct counting measurement of a single count
rate measurand. This is then applied to one of the simplest non-trivial, realistic meas-
urements of ionizing radiation where the measurand of interest is a net count rate, given
as the difference of a gross count rate and a background count rate, both measured by
counting radiation events from assumed stationary Poisson processes of pulses. The
truncated GD of the measurand can be accepted as a reasonable approximation in such
cases, even in cases of poor measurement, e.g., under low-level circumstances when only
a few radiation events were recorded.

Let n ionizing-radiation events be recorded in a counting measurement of a fixed du-
ration t. The number n of counts is assumed to be drawn from an underlying Poisson
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frequency distribution of a random variable N with an unknown parameter %t ≥ 0.
Here, % is a value of the count rate Y = R of interest, the measurand. For N , a Poisson
probability function

pN (n | %, t) =
e−%t(%t)n

n!
; (n = 0, 1, . . .) (29)

with E (N) = Var (N) = %t can in most cases be assumed for physical reasons because
nuclear events are physically independent and mean-life and dead-time effects, pile-
up of pulses, and instrumental instabilities can often be neglected except, for instance,
when short-lived radionuclides or very high count rates are involved or, in multi-channel
spectrum measurement, in channels at the slopes of strong spectral lines.

In order to establish the density of the count rate measurand R, the Bayes theorem
fR(% | n, t) = C pN (n | %, t) fR(% | t) similar to equation (11) is applied. The prior
fR(% | t) is the density of R before the measurement is performed. Jaynes [37] ob-
tained it by a scaling consideration similar to the following one. Assuming a stationary
Poisson process of the radiation measured, the prior of the count rate R cannot de-
pend on the arbitrary measurement duration t, i.e. fR(% | t) = fR(%) = tg(%t), where
the function g(%t) expresses the density of the transformed random variable V = R t
with the value v = %t. Differentiation with respect to t yields the differential equation
∂(tg(%t))/∂t = g(v) + vg′(v) = 0 with the solution g(v) = C/v (v > 0 ; C is the integra-
tion constant) finally leading to the prior fR(% | t) = C/% (% > 0). The fact that this
prior is not normalizable is due to the neglect of short-term and long-term influences
on the measurement. Accordingly, the prior must be taken as an approximation of a
more realistic, normalizable one. By inserting fR(% | t) = C/% into the Bayes theorem
considered above and normalizing yields with equation (29) the gamma density

fR(% | n, t) =
te−%t(%t)n−1

(n− 1)!
; (% ≥ 0) (30)

which is set to zero for % < 0. The expectation E (R) = r = n/t is the measurement
result. The variance Var (R) = r/t = n/t2 leads to the associated standard uncertainty
u(r) =

√
r/t =

√
n/t.

The particular case n = 0 must be treated separately: E (R) and Var (R) vanish, and
fR(% | n, t) = δ(%) and a zero uncertainty follow. This is not reasonable in practice
since one can never be sure that exactly R = 0 if no event happens to be recorded in
a measurement of finite duration. Thus, no reasonable statement can be made on the
count rate R if n = 0. With any more realistic prior fR(% | t), one should always obtain
E (R) > 0 and Var (R) > 0. In CSt, N itself is commonly used as an unbiased estimator
of Rt since E (N) = %t. Thus, the number n of events counted is an estimate of Rt. With
Var (N) also estimated by n, the standard uncertainty u(r) =

√
n/t of the measurand

R follows and also turns out to be unreasonable for n = 0.

To avoid this shortcoming, which can lead to severe difficulties [19], it is assumed that the
counting measurement is carried out with a duration t chosen suitably large according
to the experience of former, similar measurements, so that for any reasonable % > 0 at
least a few counts can be expected. The duration t is therefore no longer arbitrary. This
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knowledge can justify a prior fR(% | t) = C/%ν with 0 ≤ ν < 1, e.g., the Jeffreys prior
with ν = 1/2 [38]. This reduces the prior for small % significantly, makes it integrable and
removes the shortcoming, but requires a reasonable, physically motivated choice of ν.
Moreover, R will be bounded for physical or experimental reasons, although a sufficiently
large upper bound need not be specified explicitly. This knowledge is represented by an
equally likely R between zero and the upper bound, thus, by a uniform prior fR(% | t)
—i.e. ν = 0—similar to other physical quantities in practice. The Bayes theorem and
normalization then yield the gamma density

fR = fR(% | n, t) = H(%) · te−%t(%t)n/n! . (31)

The Heaviside unit step function H(%) here formally indicates that fR = 0 for % < 0.
According to equation (31), E (R) = r = (n+ 1)/t and Var (R) = r/t = (n+ 1)/t2. This
result is more reasonable for n = 0 since the standard uncertainty u(r) =

√
n+ 1/t does

not vanish, and the interval with limits r±u(r) of reasonable estimates of the measurand
(according to GUM [2]) turns out to also contain the estimate % = 0. Asymptotically
for large n, both approaches discussed lead to the same results. The main differences
only occur for very small n.

The following subscripts g and 0 refer to independent counting radiation measurements
of gross and background effects, respectively [25]. The model Y = G(X) = X1 −X2 =
Rg−R0 is introduced where the measurand Y = Rn is the net count rate and X1 = Rg

and X2 = R0. It is one of the simplest possible non-trivial models in measurement of
ionizing radiation. The information set a consists of the recorded counts ng and n0 and
of the measurement durations tg and t0, i.e., a = {ng, n0, tg, t0}. The due rate values
are x1 = E (Rg | ng, tg) = rg = (ng + 1)/tg and x2 = E (R0 | n0, t0) = r0 = (n0 + 1)/t0.
Uniform priors are used as above equation (31). A primary estimate of the measurand
is y0 = x1 − x2 = rg − r0 with the associated squared standard uncertainty u2(y0) =
x1/tg + x2/t0. According to equation (3), all this yields

fY (y | a) =

∫
δ(y − ξ1 + ξ2) fX1

(ξ1 | ng, tg) fX2
(ξ2 | n0, t0) dξ1 dξ2

=

∫ ∞
0

fX1
(y + ξ | ng, tg) fX2

(ξ | n0, t0) dξ . (32)

This density fY (y | a) is thus obtained by folding two gamma densities. It also becomes
a GD for large ng, n0, tg, t0 when standardized, since folding two GD again yields such a
density. It remains to be truncated at y = 0 and renormalized to finally form the density
fY (y | a, y ≥ 0) = C H(y) fY (y | a). The truncation is criticized by reference [40] but
can alternatively be replaced by also observing the condition ξ1 ≥ ξ2 in the integration
of equation (32). This additional integration condition is equivalent to y = ξ1 − ξ2 ≥ 0
because of the model equation and yields the same result.

In order to obtain ã(ỹ) if ng is missing before the gross-effect measurement is carried
out, the model equation ỹ = x1−x2 = rg− r0 is solved for x1 = rg = ỹ+ r0. This leads
to ã(ỹ) and to fY (y | ã(ỹ)) by replacing ng in a and in equation (32) by (ỹ + r0)tg − 1.
The gamma density of X1 = Rg accordingly changes, but the new value ng is no longer
necessarily a natural number. Then, n! must be replaced by the gamma function Γ(n+1).
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The density f = fY (y | a) according to equation (32) can be analytically calculated [7,
19, 25]. Its expansion in terms of Hermite polynomials Hei(η) [25, 36] reads

fY (y | a) =
exp(−η2/2)

σ
√

2π

(
1 +

a3
3!

He3(η) +
a4
4!

He4(η) + . . .
)

; η =
y − µ
σ

(33)

with He3(η) = η3 − 3η and He4(η) = η4 − 6η2 + 3. The cumulants

κi = (i− 1)!
( rg

ti−1g
+

(−1)ir0

ti−10

)
(34)

provide the expectation µ = κ1 = rg − r0, the variance σ2 = κ2 = rg/tg + r0/t0, the
skewness a3 = κ3/σ

3 and the excess a4 = κ4/σ
4 [25, 36]. If the measurement durations

tg and t0 are enlarged by a factor τ , then σ2 ∼ 1/τ and a3 ∼ 1/
√
τ and a4 ∼ 1/τ .

Accordingly, the density f converges for τ → ∞ (in distribution) via the GD to the
Dirac delta function δ(y − µ). This convergence in distribution is important for the
characteristic values since it means, if some conditions are met, not only the pointwise
convergence of a distribution to a limiting one, but also that any intergral of a function
formed with respect to the distribution converges to the corresponding integral with
respect to the limiting distribution [19]. If rg is replaced by ỹ+ r0 for ã(ỹ), then µ = ỹ.
This meets the condition according to equation (20).

The density f and the corresponding GD, which is the leading fraction of equation (33),
differ visibly but not too greatly in cases of only a few recorded events. The differences
vanish by enlarging the measurement durations and keeping the count rates constant.
In view of a considerable number of disregarded possible influences in practice, it can
therefore be stated that the Gaussian approach is always a reasonable approximation.
If this statement is not regarded as satisfactory then either MC should be applied
according to reference [25] or a poor measurement improved by analysing the influences
and by repeating it with greater durations.

5.8 Random influences by sample treatment

Equation (B.7) in annex B.4.1 of ISO 11929 [1] deals with a series of counting measure-
ments on some comparable, randomly influenced, radioactive samples with the same
nominal activity quantified by the measurand Y . It is criticized by reference [41] that
equation (B.7)
(a) does not take into account the standard uncertainties u(xi) =

√
ni (i = 1, . . . ,m)

associated with the results xi = ni of m individual counting measurements and
(b) leads to too small a coverage interval.

The criticism seems to be justified since equation (B.7) of ISO 11929 is indeed a CSt
relic. Therefore, this equation is reconsidered. Problems (a) and (b) turn out to be
largely independent since (b) can already be understood and removed without using the
uncertainties u(xi). This is shown by the analytical BSt approach of appendix C, which
solves both problems on the basis of an assumed Gaussian density (GD) of deviations
caused by sample treatment and of Poisson counting distributions. See also references
[15, 27].
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There are several ways to approach problems (a) and (b). It is therefore stressed that
reasonable, possibly improved equations similar to equation (B.7) can differ slightly not
only because of applying either BSt or CSt, but also because of using different approx-
imations, assumptions or information sets such as known or unknown distributions or
uncertainties or different models such as arithmetic, weighted or harmonic means or
different methods such as minimum chi-square or maximum likelihood.

Let random input variables Xi be assigned to the individual radioactivities of m compa-
rable samples of the same nominal activity quantified by the measurand Y . This can be
achieved, for instance, by homogenizing the possibly radioactive material to be investi-
gated before the samples are taken from the material. Then, a sufficiently well-defined
true value of the measurand can be assumed. The Xi differ because of sample treatment,
the contribution of which can be expressed by individual unknown deviations di of other
random input variables Di. This means Xi = Y +Di or Y = Xi −Di. If the radiation
measurements on the samples and the sample treatments are independently carried out,
then the variables Xi and Di can be taken as being altogether independent or at least
uncorrelated. The Di are assumed to follow the same GD. If the expectations xi = EXi

are given as the numbers ni of events recorded from Poisson counting measurements
of the same duration t on the samples, then u2(xi) = Var (Xi) = ni (for simplicity; or
= ni + 1. See subsection 5.7).

The recommendation to improve equation (B.7) of ISO 11929 consists simply in replac-
ing the second part of this equation by

u2(n) =
1

m

(
n+

m− 1

m− 3
n+

A

m− 3

)
; A =

m∑
i=1

(ni − n)2 (35)

and s2/m everywhere in annex B.4 of ISO 11929 by u2(n), which is the variance Var (Y )
and the squared standard uncertainty of the measurand Y associated with the expecta-
tion E (Y ) = n. Obviously, m > 3 is required. If the two terms with m−3 are abbreviated
by u2 and if equation (B.12) of ISO 11929 is also observed, then

u2(n) =
n+ u2

m
=
n+ ϑ2n2

m
or ϑ = u/n . (36)

The somewhat surprising result of equation (35) is derived in appendix C. It requires
some explanation. The denominator m−3 comes from BSt and replaces m−1 from CSt.
It has nothing to do with the counting uncertainties

√
ni, which give rise to the first

term n between the brackets. Similar to CSt, the third term is a part of the estimation
of the variance of the underlying GD. The unexpected second term, also proportional
to n, represents some “cross effect” due to the influence of the counting uncertainties
on the variance estimation.

Other proposed changes are:
(a) The unsubscripted ϑ is used in annex B.4.3 of ISO 11929 in order to convey infor-
mation from measurements of a larger number of reference samples to measurements
of a small number of comparable samples. Otherwise, ϑ should be suitably replaced by
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ϑg, ϑ0, and ϑr. The results ϑg = 0.2022, ϑ0 = 0.2379, ϑr = 0.1457 are already obtained
with the input data from table D.2 of ISO 11929 where ϑ corresponds to ϑr = 0.1377.
(b) No need for the requirement ϑ < 0.2 can be seen. It should either be deleted or 0.2
be enlarged to 0.25 since ϑ is always larger than the old ϑ.
(c) The symbol s2 should no longer be used. Instead, s2/m should be replaced by u2(n).
(d) The results presented in table D.2 of ISO 11929 must still be recalculated.

In cases of m ≤ 3, infinite uncertainties are involved and the GD approximations of ISO
11929 are thus no longer suitable. Nevertheless, the quantiles of the density fY leading to
equation (35) remain finite so that the more general approach of section 4 by MC [25] to
the characteristic limits according to equations (15) to (18) remains applicable. However,
an unsuitable, much greater computational effort will be necessary, possibly greater than
the alternative effort for carrying out the required four sample measurements at least.

The assumption of Poisson counting distributions leading to Bayesian gamma distribu-
tions can be justified by physical considerations (see the paragraph of equation (29)).
The assumption of a GD for the deviations Di from the influence of the sample treat-
ment is also criticized, but can be justified at least as a suitable approximation following
from PME as long as only its expectation µ and variance σ2 are of interest and need to
be estimated, or by the central limit theorem of probability theory if the deviations are
assumed to be caused in total by several superposed influences. The log-normal distri-
bution may be preferred. However, this should only be done for multiplicative models in
question such as Y =

∏m
i=1X

νi
i (which can also read lnY =

∑m
i=1 νi lnXi), but never

for additive models, for instance, Y = X = (1/m)
∑m
i=1Xi as in the present case. An

empirical distribution replacing the GD could be constructed if, in rare cases or in MC,
m is very large [25, 26]. The variance σ2 (or standard deviation σ) is a scale parame-
ter according to reference [15 (2.8.2)]. This justifies a prior for it proportional to 1/σ2

(or 1/σ, respectively). The expectation µ is a location parameter for which a constant
prior is suitable. A prior proportional to 1/ξ is assumed for the Poisson distribution
parameter ξ (see subsection 5.7).

The density fY leading to equation (35) reads according to appendix C

fY = fY (y | n) = C

∫ ∞
0

(
A+m (y − ξ)2

)−m/2 m∏
i=1

ξni−1
i exp(−ξi) dξξξ . (37)

For ξi fixed, fY is a Student density, which is proportional to |y|−m for y → ±∞. It
is thus normalizable only for m > 1. Its expectation E (Y ) = n exists only for m > 2
and, in addition, for m = 2 as the principal value limε→∞

∫ ε
−ε yfY dy. Its variance

Var (Y ) = u2(n) according to equation (35) exists only for m > 3. The necessary
integrations for C, E (Y ) and Var (Y ) can be carried out by elementary means (see
appendix C). Only normalizable distributions can have quantiles and, thus, coverage
intervals. Notice that the tails of fY are much more pronounced than those of a GD.
This leads to coverage intervals of larger widths compared with the corresponding ones
obtained from ISO 11929.

It should finally be pointed out that knowledge of the measurand Y to be non-negative
is neglected. The lower tail of the GD to −∞ is thus merely a convenient approximation.
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This does not matter if xi and ni are sufficiently large. Otherwise, the density fY must
be truncated at y = 0 and renormalized (see also subsection 6.1).

5.9 Treating a single spectral line

Annex C.2 of ISO 11929 [1] deals with the treatment of a single line expected to be
present or not in a multi-channel spectrum on a linear or curved background. Denota-
tions C.n in the following refer to this annex C.2. Equations (C.9) and (C.10) stipulate
the width tg of a suitable region B covering the line for the determination of the line
intensity, which is the measurand Y (see figure C.1). It was said that these equations
are not obvious enough because a derivation is missing, their application is questionable
and equation (C.10) should be deleted. They are therefore reconsidered.

Equations (C.9) and (C.10) read tg = 2.5h and tg = 1.2h for a negligible or dominant
background, respectively. Here, h is the full width at half-maximum (FWHM) of the
line of interest. The equations can only be applied in a case where the line location and
FWHM are already known sufficiently well from preceding line shape calibration using
large, well defined lines and a Gaussian line shape with variance σ2 can be assumed.
Equation (C.10) was first stipulated in DIN 25482-2:1992 [42] by the working group AK
SIGMA (see “Acknowledgements”). It is based on the unpublished derivation made 1986
by the group and is now given below. For a later, similar derivation, see reference [43].
Equation (C.10) is specific for the treatment of a small, but important line of interest on
a high (dominant) background in order to minimize the measurand uncertainty. This can
be important particularly when it has to be decided whether or not the line is recognized
as present. Notice that the decision threshold y∗ = k1−αũ(ỹ = 0) according to equation
(21) of ISO 11929 is proportional to the uncertainty in the case of an assumed dominant
background. This uncertainty depends on the chosen width tg of the line region B (see
figure C.1) and has a minimum at tg given by equation (C.10), which should therefore
not be deleted.

If, in contrast, intensity, location, FWHM and shape of a line are unknown and must
all be determined from the same measured multi-channel spectrum just at hand, then
this case represents a quite different situation of information and task and requires its
own model and a fit procedure. Therefore, the same corresponding characteristic values
as above for the measurand Y cannot be expected. Corresponding characteristic values
for the same measurand but from two different cases need not be comparable. Such
values depend on the state of information just available but are not physical quantities
with a true value to be determined. The two cases must be distinguished and never be
mixed up.

Because of h = 2
√

2 ln 2 σ = 2.35σ for a Gaussian line shape, it is tg = 2.5h = 5.9σ ≈
6σ in equation (C.9). This means 3σ on each side of the line center. The value 3σ is
sometimes used in statistics by agreement. Accordingly, region B covers with its agreed
width tg = 2.5h nearly the whole line, whereas with tg = 1.2h = 2.8σ in equation
(C.10), region B covers only 84 percent of the line. But it is outlined below that the
choice of equation (C.10) approximately minimizes the standard uncertainty u(y) of the
measurand Y .

In order to obtain equation (C.10), a reasonable model for the measurand Y must first
be established. Let a continuous variable ϑ be linearly assigned to the channel number
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with ϑ = 0 at the known line location and the line shape g(ϑ) ≥ 0 be given with∫∞
−∞ g(ϑ) dϑ = 1. The line portion of region B with full width t and centered on the

line then is L(t) =
∫ t/2
−t/2 g(ϑ) dϑ ≤ 1. The model equation Y = (Xg − Z0)/L(t) now

can be applied. Here, Xg estimates the gross portion of region B and Z0 estimates the
background contribution in region B, but determined from channel regions of a fixed
total width t0 outside region B. The estimators Xg and Z0 are independent. Accordingly,
the uncertainty equation u2(y) = (u2(xg) + u2(z0))/L2(t) applies with estimates xg for
Xg and z0 for Z0. Since Xg is an estimator of a Poisson distribution parameter, it has a
gamma density and xg = ng and u2(xg) = ng can be set with the number ng of registered
events in region B (see equation (C.4) and subsection 5.7). For a dominant background,
the contribution of the line itself to ng can be neglected. Then, ng ∼ t, i.e. ng is (nearly)
proportional to the width t of the chosen region B. The contribution u2(z0) of a linear
or curved background from outside of region B is given in equations (C.11) or (C.12),
respectively. It is rather complex in the latter case, but in both cases it has a leading
factor (t/t0)2. Thus, if t0 can be chosen large enough, then (t/t0)2 and the uncertainty
contribution u2(z0) are small and can be neglected. Finally, u2(y) ∼ t/L2(t) = min (or
u(y) ∼

√
t/L(t) = min) remains to be solved for t. This can be done, e.g., by numerically

varying t. For a Gaussian line shape g(ϑ) ∼ exp(−ϑ2/(2σ2)), in particular, the result
t = 2.800σ = 1.189h ≈ 1.2h is obtained as is expected for equation (C.10).

The described assessment method can be applied to arbitrary line and background
shapes. There is always an absolute minimum of u(y). This follows from u(y) ∼ 1/

√
t→

∞ with L(t) ≈ tg(0) for t→ 0 and from u(y)→∞ with L(t)→ 1 for t→∞. However,
there is no need to use the exact solution t of the minimum, e.g., t = 1.189h as above
for equation (C.10), since u(y) does not depend considerably on t in a neighbourhood
of the minimum. If a sufficiently large t0 cannot be chosen, then z0 = (t/t0)n0 + . . .
and u2(z0) ∼ (t/t0)2n0 + . . . must also be taken into account. Here, n0 is the number
of registered events in the involved regions outside region B, and the points . . . denote
neglected terms of higher order in t/t0. Then, u2(y) ∼ (t + ct2 + . . .)/L2(t) with a
constant c > 0 has to be minimized. This shifts the solution t for c = 0 to a smaller
value.

5.10 Exceptional values of the detection limit

The detection limit y] serves for the decision on whether or not the measurement proce-
dure intended for application is appropriate for the measurement purpose. The decision
is made by comparing y] with a specified guideline value yr. If y] ≤ yr, then it is decided
that the procedure is appropriate (see subsection 4.4).

According to equations (21) and (22) of ISO 11929 [1], the condition y] ≥ y∗ ≥ 0 must
be met since there is no negative uncertainty and if k1−α, k1−β ≥ 0 (α, β ≤ 1/2) are
specified as usual. However, y] can apply infinite or negative values, which, for instance,
follow from equation (28) of ISO 11929 if the denominator vanishes or is negative,
respectively. This possibility of exceptional, physically meaningless values is criticized
by reference [44] as an inacceptable shortcoming of the standard, but it should instead
better be taken as a great advantage ! The exceptional values provide a strong hint
that the measurement procedure is unsuitable, even in a case where no guideline value
yr is specified. Then the procedure and the input information must be revised and
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improved, e.g., by choosing longer measurement durations to reduce involved count rate
uncertainties, by more realistically assessing uncertainties of calibration or influence
factors, or by refining the model.

6. Proposed alternatives

6.1 Distributions

The present subsection deals with alternative distributions of the non-negative measur-
and Y with respect to knowledge of whether or not the condition y ≥ 0 is observed or
applied.

Any distribution in the Bayesian sense expresses the information just available and
taken into account: neither more nor less. Let only a primary measurement result y0
and the associated standard uncertainty u(y0) obtained from GUM be available as the
expectation and the standard deviation, respectively, of an unknown primary density
f0 = fY (y | y0, u(y0)). Let it also be unknown whether or not the non-negativity of the
measurand Y is taken into account. Then, f0 can be reconstructed by the PME in a
first step according to equation (28). With a uniform prior, the GD f0 = exp(−(y −
y0)2/(2u2(y0)))/(

√
2πu(y0)) for all y results.

In a second step, f0 is updated for the non-negativity of the measurand Y to form
the final density fY = fY (y | y0, u(y0), y ≥ 0). This fY becomes, according to the
PME, equations (8) or (28), also a GD, but truncated at y = 0 and renormalized, i.e.
fY = C H(y) exp(−(y− y0)2/(2u2(y0))). Truncation and renormalization are caused by
the restriction to the region R = {y | y ≥ 0}. Since there are no further constraints for
fY , the factor exp(. . .) = 1 is valid in equations (8) or (28). For another example, see
below equation (32).

If it is, in contrast, definitely known that the condition y ≥ 0 had already been taken
into account when y0 and u(y0) were determined, then these values are no longer the
estimate and the standard deviation of f0 but of the final (unknown) fY . In this case,
fY is, according to equation (8), also a GD, truncated at y = 0 and renormalized. But
now, E (Y ) = ŷ = y0 and

√
Var (X) = u(ŷ) = u(y0) for fY applies, i.e. the primary

estimate y0 and the best estimate ŷ are identical, and the respective uncertainties as
well.

The authors of reference [40] and others wish to give more weight to the value
y = 0 of the non-negative measurand Y by a modification of an arbitrary density
f(y) = fY (y | a), for instance, of f(y) = fY (y | ã(ỹ)), which is needed for the de-
termination of the decision threshold y∗ and the detection limit y]. They do this by

truncating f(y) at y = 0 and adding Qδ(y) with Q =
∫ 0

−∞ f(y) dy. This yields the mod-
ified density f ′(y) = H(y)f(y) + Qδ(y), which remains normalized. The authors have
the “perception” that this would be an alternative better than the PME renormalization
after the truncation which leads to f ′(y) = H(y)f(y)/(1−Q). They are indeed free to
do this in the framework of the present theory, but must have a reasonable motivation
based on concrete physical information about the perception or use an accordingly re-
fined model. Otherwise, the perception would merely act as an additional mathematical
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postulate. In contrast, the PME approach only needs the knowledge that Y is a non-
negative measurand and maximizes the due entropy S = −

∫∞
0
f ′(y) ln(f ′(y)/f(y)) dy.

Here, f(y) acts as the prior since it represents all the information already taken into
account.

The density modification described above varies the characteristic values except y∗

and y]. This exception is shown now. Equations (17) and (18) for the definition and
determination of y∗ and y] can also read∫ ∞

y∗
fY (y | ã(ỹ = 0)) dy = α ;

∫ ∞
y∗

fY (y | ã(ỹ = y])) dy = 1− β . (38)

The latter equation is obtained by subtracting equation (18) from the normalization
condition

∫∞
−∞ f(y) dy = 1. Notice that f(y) for y < y∗ and any ỹ is not needed in

equations (38) and can thus be arbitrarily deformed (while remaining a probability
density) without any change of y∗ and y]. The deformation proposed above is thus
admissible if physically justified, but needless since y∗ > 0.

6.2 Final measurement result

It is proposed to use the mode or the median of fY instead of the expectation as the
“best estimate” of the true value of the measurand Y . This proposal should not be
accepted, although in principle every possible value y of Y could be used as an estimate
of Y and is associated with the uncertainty u(y) =

√
E ((Y − y)2). The expectation is

thus associated with the minimum uncertainty, called the standard uncertainty (stand-
ard deviation, GUM), and is therefore taken as the best estimate. Another reason is
consistency (see subsection 5.6), which can be achieved independently of any involved
distributions only if expectations and uncertainty (covariance) matrices express com-
plete measurement results. This also guarantees that such results can consistently be
used as input data for a successive calculation.

As a simple example, consider the model equation Y = X1 +X2. Then, always E (Y ) =
E (X1) + E (X2) independently of the involved densities of the input estimators X1

and X2. But a similar equation is in general not valid either for modes or for medians
as is shown below, except for particular, with respect to the expectation symmetric,
single-mode densities such as (untruncated) Gaussian ones where expectation, mode
and median are identical.

Numerically, let X1 and X2 be independent and non-negative and have the densities
fX1

(ξ1) = exp(−ξ1) and fX2
(ξ2) = 2 exp(−2ξ2); (ξ1, ξ2 ≥ 0), respectively, with the

expectation sum 1 + 1/2 = 1.500, mode sum 0 + 0 = 0 and median sum ln 2 + (ln 2)/2 =
1.040. These sums should equal the respective expectation, mode and median of the
estimator sum Y = X1 +X2, which is also non-negative. By folding the input densities
according to equation (3), the density fY (η) = 2(exp(−η)− exp(−2η)); (η ≥ 0) results,
indeed with the expectation 1.500. But its mode ln 2 = 0.693 and median − ln(1 −
1/
√

2) = 1.228 differ considerably from the respective sum values.
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6.3 Coverage intervals

It is proposed to use the coverage interval of minimum width instead of the probabilisti-
cally symmetric coverage interval. This shortest coverage interval should be accepted in
ISO 11929 at least as an alternative although in more general cases with MC application
a considerably greater computational effort must be expected. However, it meets more of
the metrological requirements described in the following. It includes, for instance, quite
naturally the estimate y = 0 for small y0/u(y0) as was demanded. See also appendix B,
figure 3 and reference [45].

Every for practice reasonably stipulated coverage interval of a non-negative measurand,
quantifying the physical effect in question, should meet as far as possible the following
metrological demands:
(1) Its lower limit must be non-negative.
(2) It should cover the possible measurand value 0 if and only if this value is actually
“highly probable”.
(3) Its definition should not explicitly depend on the other characteristic values.
(4) Asymptotically for a large primary measurement result y0 much greater than the
associated standard uncertainty u(y0), it should become identical with the common
symmetric coverage interval.
(5) The computing effort for its limits should not be much larger than that for the other
characteristic values.

The probabilistically symmetric coverage interval meets the demands except (2),
whereas the shortest coverage interval meets all of them, demand (5) at least in the
Gaussian case of ISO 11929 (see also subsection 6.4, appendix B and figure 3).

The best estimate ŷ = E (Y ) can in rare cases be located outside the coverage interval.
This can happen if the density fY (y) has a pronounced tail as in the following illustrative
example. Let fY (y) = 1−γ for 0 ≤ y ≤ 1 and = γ/(c−1) for 1 < y ≤ c and = 0 elsewhere
with c > 1/(1− γ). Then, y> = 1 is the upper limit of the shortest coverage interval for
the coverage probability 1−γ (see appendix B). The best estimate ŷ = (1+cγ)/2 is larger
than y> and thus located outside the coverage interval if c > 1/γ, that is c > 20 for
γ = 0.05. Replace γ by γ/2 in fY (y) and ŷ for the probabilistically symmetric coverage
interval. Then, y. = 1 is the upper limit of this interval for the coverage probability
1− γ and it is y. < ŷ and ŷ thus located outside the coverage interval if c > 2/γ, that
is c > 40 for γ = 0.05.

6.4 Decisions

Decisions in ISO 11929:2010 are in general no longer made by testing hypotheses as in
old parts of ISO 11929 and as is usual in CSt. Instead, they are based on decision theory
[3] as advised by Bayesians, who pointed out that the common tests are only applicable
in CSt and should therefore not be applied in BSt (see also subsection 6.6 (c) and (e)).
Nevertheless, there are also Bayesian hypothesis tests [46].

If y0 > y∗ with the decision threshold y∗, then it is decided that the radiation effect
in question is recognized as present. Instead, the condition ŷ > y∗∗ is proposed where
y∗∗ is defined similarly to y∗ according to equation (17), but with the density fY (y |
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ã(ỹ = 0)) replaced by fY (y | ã(ỹ = 0), y ≥ 0). Such a definition could be possible but
is it an improvement? Since y0 ≤ ŷ and also y∗ ≤ y∗∗, this question cannot easily be
answered. Moreover, the proposal requires more computing effort. Nevertheless, a rough
comparison of the two conditions can be made by the following considerations.

With ISO 11929, fY (y | ã(ỹ = 0)) is a GD with expectation 0 and standard deviation
ũ(0) and fY (y | ã(ỹ = 0), y ≥ 0) is the same density, but truncated at y = 0 and renor-
malized by a factor 2. This leads with the p-quantile kp of the standardized Gaussian
normal distribution function Φ(t) quite easily to y∗ = k1−αũ(0) [1] and, similarly, to
y∗∗ = k1−α/2ũ(0) because of the factor 2 (see figure 2). Moreover, the best estimate

ŷ = y0 +
u(y0) exp

(
− y20/(2u2(y0))

)
Φ(y0/u(y0))

√
2π

(39)

is given [1]. In many cases, the uncertainty function ũ(ỹ) increases only slowly. The
constant approximation ũ(ỹ) = u(y0) is therefore used. The scaling z = y/u(y0) of all
involved y values then leads to the decision thresholds z∗ = k1−α and z∗∗ = k1−α/2, to
the respective conditions z0 > k1−α and ẑ > k1−α/2, and to

ẑ = z0 +
exp(−z20/2)

Φ(z0)
√

2π
. (40)

In order to compare the two conditions, z0 = k1−α is set identical to the decision
threshold. What then happens with the second condition? Equation (40) yields with
Φ(k1−α) = 1− α the questionable condition

k1−α +
exp(−k21−α/2)

(1− α)
√

2π
><? k1−α/2 . (41)

By varying α, it appears that the < sign applies for α < 0.33 and the > sign otherwise.
This result allows the following conclusion. If, for a commonly small α, the value z0 is
only slightly larger than the decision threshold z∗ = k1−α in this case, then it is decided
that the radiation effect in question is recognized as present. But this decision can only
be made with the condition ŷ > y∗∗ if z0 is considerably larger. This conclusion cannot
please users of ISO 11929 in radiation protection, who are interested in measuring as
small an effect as possible. Therefore, the proposal of using the condition ŷ > y∗∗ should
be rejected. Similarly, the detection limit y]] defined by using y∗∗ instead of y∗ according
to equation (18) would become larger than y]. This would make the comparision of
the detection limit with the guideline value yr stronger and, thus, the measurement
procedure to be tested less suitable.

The shortest coverage interval according to appendix B meets demand (2) of subsec-
tion 6.3. This could allow the following decision: “The radiation effect quantified by
the measurand is recognized as present if the lower limit y< of the shortest coverage
interval is greater than 0.” Such a decision would not require the decision threshold y∗

but a different decision philosophy depending on an already known primary complete
measurement result y0, u(y0) of an individual, possibly radioactive sample and on the
coverage probability 1−γ. This kind of decision would no longer characterize the meas-
urement procedure but the sample itself and could therefore, in addition, be suitable
for a single sample measurement. It should be considered and discussed.
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If y] ≤ yr, then it is decided that the measurement procedure is suitable. But in more
general cases, the detection limit y] needs a great deal of iterative MC computation.
As shown in the text below equation (19), there is an equivalent condition P (yr) ≤ β,
which can be tested more easily since only a simple integral with fixed limits has to be
calculated by MC. y] is not needed in this case, but the decision threshold y∗ as the
upper integral limit of equation (19) must be known. It should be discussed whether or
not the detection limit y] is really needed.

6.5 Recommendations for computing

The model function G(x) or an algorithm for calculating a measurand value y and the
associated standard uncertainty u(y) according to GUM should not be implemented as
a single arithmetic expression but as a subroutine. This can considerably facilitate the
numerical determination of the terms contributing to the uncertainty since, for instance,
by replacing only xi by xi ± u(xi)/2,

∂G

∂xi
u(xi) = G

(
x1, . . . , xi + u(xi)/2, . . .

)
−G

(
x1, . . . , xi − u(xi)/2, . . .

)
(42)

for equation (3) of ISO 11929 [1]. This linear approximation of the partial derivatives is
in most cases sufficient since uncertainty according to GUM already follows from a linear
theory. People sometimes say that linear approximations for uncertainty calculations are
not acceptable since models are often non-linear and MC must therefore used. That is
wrong ! Even a strongly non-linear model has to be approximately linear only in the
data region of interest, determined by the uncertainties (see also subsection 3.2). This
can easily be tested by slightly and suitably modifying the variation of xi in equation
(42) and observing what happens with the results. For instance, replace xi ± u(xi)/2
by xi and xi − u(xi) or by xi + u(xi) and xi, respectively. For software, see references
[15, 24].

A quantity A often has to be calculated from an arithmetic formula in terms of other
quantities Bi, for instance, A =

√
B2

1 +B2
2 . If the quantities Bi are themselves given by

arithmetic expressions, then these expressions should never be inserted directly into the
formula since this could enlarge the complexity and severely disturb the transparency.
Instead, the Bi should first be calculated numerically from the expressions. Then the
results should be inserted into the formula in order to finally obtain the numerical value
of A.

Although the Monte Carlo (MC) method is proposed in the present paper and elsewhere
as the method of first choice in more complex cases of numerical calculations of charac-
teristic values, its application is not always inevitable. It is pointed out that there are
also a lot of effective, sometimes simple numerical or analytical methods [35, 36] such as,
for instance, (asymptotic) series expansions of distributions as already used in equation
(33). These methods often furnish sufficient approximations, e.g., for quantiles since α,
β and γ are usually small numbers. As an example, let a density f(y) be truncated at
y = 0 and have a value f(0) > 0 and an upper tail of the asymptotic form f(y) ≈ C/yν
(ν > 1) or f(y) ≈ C exp(−y/λ). The limits of the probabilistically symmetric coverage
interval then are y/ ≈ γ/(2f(0)) and y. ≈ (2C/((ν − 1)γ))1/(ν−1) or y. ≈ λ ln(2Cλ/γ),

respectively, obtained from γ/2 =
∫ y/
0
f(y) dy ≈ f(0)y/ and γ/2 =

∫∞
y.
f(y) dy.
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6.6 Naming of terms

There is severe, long-lasting disagreement in understanding, nomenclature, and notation
of concepts and methods between conventional, frequency-based statistics (CSt) and
Bayesian statistics (BSt) and also between pure BSt (school A) and BSt including
PME (school B). First of all, the different meanings of probability in BSt and CSt are
mentioned (see section 1 and subsection 2.2). Other examples of such concepts are:
confidence limits (coverage interval limits, credible limits) and errors of first and second
kind. BSt including PME of school B is used as it is in ISO 11929 [1], reference [25], and
the present paper since it seems to be the best method for proceeding successfully to the
scope of characteristic values. However, this is not the place to discuss and justify the
statistical directions, methods, and problems. Nevertheless, some proposals for changing
terms, mainly relics of CSt, should be discussed:

(a) The term “confidence interval” in ISO 11929 should be changed to “coverage inter-
val” according to references [26 (3.12), 28 (2.36)]. “Confidence interval” is a term from
CSt.

(b) A proposal to replace the term “detection limit” by “minimum detectable activity”
should not be accepted since “detection limit” is a term already well established in the
older parts of ISO 11929 [22] and commonly applied. “Activity” is not general enough,
but “measurand value” could instead be used. Detection limits can be determined for
many physical or chemical quantities which are not activities.

(c) Proposals to replace the term “error of the first/second kind” of CSt by “false
positive/negative decision” or “decision error of the first/second kind” have already
been discussed. The first proposal is now used preliminarily in the present paper.

(d) A demand from purely Bayesian school A to use the term “likelihood” (originating
from CSt) only for the function C fV(v | ζζζ) of ζζζ in the Bayes theorem according to
equation (11) but never for the analogous function C exp(. . .) from PME in equation
(8) could be accepted. Then, annex F.2 of ISO 11929 [1] has to be revised accordingly.
However, it is shown in appendix A.3 that both functions are identical for equivalent
input information.

(e) The reading of decisions such as “It is decided that the physical effect quantified
by the measurand is recognized as present” or, more general, “If <conditions>, then
it is decided that <statement>.” should be critically examined by experts in decision
theory. A proposal of using “asserted” instead of “decided” does not seem to be strong
enough for a radiation protection standard.

7. Conclusions

The characteristic values studied in the present paper are needed for the quantification,
recognition and detection of ionizing radiation and allow decisions to be made for ra-
diation protection purposes. They are defined quite generally in section 4 on Bayesian
statistics (BSt) as closely as possible and in reasonable agreement with common practice
and can be calculated in more complex and critical cases of radiation measurement by
using Monte Carlo methods (MC). Moreover, the present approach to the characteristic
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values makes it possible to go a step beyond the present state of standardization laid
down in ISO 11929 [1] since distributions rather than uncertainties can be propagated.
It is thus more comprehensive and promising.

ISO 11929 [1] mainly uses quite easy to handle (truncated) Gaussian probability distri-
butions (GD). More general distributions representing all the available relevant knowl-
edge on the radiation measurand in question can be obtained, for example, by the
principle of maximum entropy (PME, subsection 3.1), but require in general the appli-
cation of MC. The GD plays a dominant part since in very many cases distributions
can be approximated by Gaussian ones if there is a parameter τ , for instance, the meas-
urement duration, which can be made sufficiently large to improve the approximation.
However, the convergence to the GD can be rather slow, i.e. only proportional to 1/

√
τ

[25]. For more reasons, see also subsection 5.3.

What should at least be improved in ISO 11929? First of all, the approach by means
of the prominent GD should be retained and possibly supplemented by applications
of more general distributions according to reference [25]. The latter and other reasons
imply a revision of annexes B.4 and F.2 of the standard. The general definitions of
the characteristic values according to section 4 of the present paper should be included
and also the limits of the shortest coverage interval according to subsection 6.3 and
appendix B as an alternative to the limits of the probabilistically symmetric coverage
interval. Moreover, the way of expressing decisions (subsection 6.4) and of naming terms
(subsection 6.6) should be revised. Demands for some simpler numerical examples of
application worked out in detail should also be satisfied. Such examples are already
available [47].

The present paper and reference [47] now provide all the material elaborated and col-
lected until the end of 2012 for the planned revision of ISO 11929.

Finally, it should be understood that the matter of characteristic values is not a matter
of right or wrong but a matter of knowledge, approximation, reasonableness, expenditure
and agreement as is often the case in physics.
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Appendix A: More about PME

A.1 Priors from the Bernoulli principle

A proponent of school A said that the PME according to equations (7) or (49) can
never be used since the prior f0 is not known from the first, i.e. at the beginning when
no information at all is available and the probability of a random event is therefore
completely arbitrary. That may hold true from a purely mathematical point of view.
But the situation is quite different in physics. Some knowledge is nearly always present.
Consider a coin to be tossed. The coin is a physical object with a symmetry of both its
sides, and tossing is a physical process with an artificial arbitrariness. That is informa-
tion enough to assign from the first the prior probability 1/2 to each of the two possible
outcomes of tossing the coin. This is a simple example of the classical Bernoulli prin-
ciple of assigning the same prior probability to equally possible random events. Since
symmetry plays a prominent part in physics, “equally possible” should be understood
in a very wide sense as “if there is any symmetry between possible events”. In this way,
the Bernoulli principle can help to establish the prior more from a physical than from
a purely mathematical point of view. A prior is similarly needed in the Bayes theorem,
which is preferred by school A. See also subsection 5.5.

A.2 A derivation of the PME

The following outline of a proof of the PME is based only on means common to both
Bayesian schools A and B, i.e. on probability theory. It cannot really reconcile the
schools but could show a possible direction to find a compromise between them.

In order to derive the PME, let each one of N real or abstract objects of the same kind
be in one of n different possible states i (i = 1, . . . , n) with a given probability pi > 0.
Examples of such objects are bullets of the same volume and mass such as molecules of
a substance or are independent trials under the same conditions. The states may be, for
instance, boxes, quantum states or merely any alternative possibilities. The probability
pi may be, for instance, proportional to the opening area of a box i. The number Ni ≥ 0
denotes the number of objects in the state i. It may be the number of hits of box i when
tossing N bullets. The joint probability P (taken as a degree of belief) of a distribution
{N1, . . . , Nn} of all Ni with

∑n
i=1Ni = N is then given by the multinomial distribution,

the probability function of which is

P = p(N1, . . . , Nn) = N !

n∏
i=1

pNi
i /Ni! . (43)

P must not change if an arbitrary number of states with pi = 0 is added. For these
states, Ni = 0 with certainty, therefore, pNi

i = 1 must be set.

The Stirling formula [36]

ν! =
√

2πν · νν exp(−ν + θ/(12ν)) ; (ν > 0 ; 0 < θ < 1) (44)

can with θ = 0 or 1 also be written in the form
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ln ν! = ν ln ν − ν + r(ν) ;

1
2 ln(2πν) < r(ν) < R(ν) = 1

2 ln(2πν) + 1/(12ν) ; (ν > 0) ;

r(0) = R(0) = 0 ; r(ν) = O(ln ν) ; R(ν)− r(ν) = O(1/ν) . (45)

The order aν = O(T (ν)) with T (ν) > 0 means that there is a fixed number ε > 0 and
a natural number ν0 such that |aν | < εT (ν) for all ν > ν0. Applying equation (45) to
equation (43) results in

lnP

N
= −

n∑
i=1

Ni
N

ln
Ni
Npi

+
r(N)

N
−

n∑
i=1

r(Ni)

N
. (46)

The function R(ν) increases monotonely for all natural numbers ν. Thus, r(Ni) ≤
R(Ni) ≤ R(N) applies for the remainder r because ofNi ≤ N . The sum of the third term
on the right-hand side of equation (46) is thus ≤ nR(N)/N and of order O((lnN)/N)
as well as the second term. Both these terms vanish with N →∞ independently of all
Ni. Equation (46) now also reads with the relative numbers yi = Ni/N

lnP

N
= S +O

( lnN

N

)
; S = −

n∑
i=1

yi ln
yi
pi

. (47)

S is the (information) entropy, the limit of (lnP )/N for N →∞. Let S0 be the absolute
maximum of S with respect to some constraints and P0 the probability belonging to S0.
Then,

P/P0 = exp
(
−N · (S0 − S) +O(lnN)

)
< Nε exp (−λN)→ 0 ; (N →∞) (48)

follows for every distribution {y1, . . . , yn} kept fixed for N →∞ if λ = S0−S > 0, i.e. S
does not absolutely maximize the entropy. The order O(lnN) means that the remainder
is less than ε lnN with an existing fixed number ε > 0. For a very large number N of
objects, every distribution with a non-maximum entropy with respect to the constraints
therefore becomes extremely improbable when compared with the entropy-maximizing
distribution. Although the probability P of a distribution loses its meaning for N →∞,
the entropy remains as a measure of this probability.

Let a region R of the space of the values x of a random vector X be decomposed in n non-
overlapping subregions Ri with the small volume elements ∆xi > 0. The subregions Ri
correspond to the states i. Then with x ∈ Ri, the normalized density f(x) is introduced
by f(x)∆xi = Ni/N = yi and, similarly, the prior by f0(x)∆xi = pi. If pi = 0, then
Ni = 0 and f(x) = 0 and f0(x) = 0. A second limiting process (besides N → ∞)
with n → ∞ and ∆xi → 0 transforms the entropy S according to equation (47) to the
integral

S = −
∫
R
f(x) ln

( f(x)

f0(x)

)
dx . (49)

This entropy S as a function of P is a measure of the probability of the density f(x),
which itself may be a probability density of the random vector X. An absolute maximum
of entropy thus also means a maximum probability of f(x). According to equation (48),
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this density has an overwhelming probability in comparison to every other density.
This explains the great importance of the PME. If the PME is applied to establish
the density f(x), the prior f0(x) must be known. The Bayes theorem also needs such
a prior. To obtain the prior, the Bernoulli principle can be used, which assigns the
same probabilities to states which are equally possible because of any known physical
symmetry, e.g., to both sides of a coin (see appendix A.1).

A.3 PME versus Bayes theorem

It was doubted that the PME and the Bayes theorem furnish identical results f for
equivalent input information (see subsection 3.1). Therefore, a proof is outlined here.
Remember that any system of linear equations Ax = b for unknowns x has a unique
solution x = A−1b only if the coefficient matrix A is non-singular, i.e. its inverse matrix
A−1 exists.

Consider a random variable Z with values z, density f = fZ(z | v) and prior f0 =
f0,Z(z). Moreover, let l = l(z) = lV (z, v) = fV (v | z) with fixed v be the likelihood and
gi = gi(z) be a complete set of linearly independent functions with g0 = 1. Every (to
some extent well-behaved) function h = h(z) then has a series expansion h =

∑
i cigi

(e.g., a power series). The unknown coefficients ci can uniquely be calculated by chosing
n abscissas zk such that the inverse matrix (gi(zk))−1 exists. The series then becomes
a system of n linear equations h(zk) =

∑
i cigi(zk) with a unique solution for n of the

ci. Since this solution is an approximation depending on the arbitrary n, the limit for
n→∞ finally has to be formed.

If l and f0 are known, then f = C l f0 is directly obtained from the Bayes theorem
according to equation (11). This f then leads to the integrals di =

∫
gif dz. And with

h = ln l, the series expansion ln l =
∑
i cigi follows. The normalization constant C is

fused with l because of g0 = 1. Then, d0 = 1 and l = f/f0.

If, vice versa, all di are known instead of the likelihood l, then the Riemann integral
approximation di =

∑n
k=1 gi(zk)f(zk)∆zk applies. With n chosen di, this is again a

system of n linear equations with a unique solution for the n unknowns f(zk)∆zk.
Hence it finally follows because of l(zk) = f(zk)∆zk/(f0(zk)∆zk) = f(zk)/f0(zk), that
there is a one-to-one correspondence between the set of the l(zk) und the set of the di.
These sets thus represent equivalent information. This holds true for an arbitrary n and
for n→∞ with max ∆zk → 0.

It also follows that the factor exp(−
∑
i µigi) (including C) from PME according to

equation (8) based on the information di represents the likelihood l = exp(
∑
i cigi).

This means µi = −ci because of the one-to-one correspondence. However, the linear
independence of the gi must be required to obtain unique solutions for the ci and µi.

For example, let l = exp(−z); f0 = 1; g0 = 1 and g1 = z be given (z ≥ 0). Then
f = l f0 = exp(−z) according to the Bayes theorem and d0 = d1 = 1. Vice versa with
these di given instead of l, the density f = exp(−µ0 − µ1z) follows from the PME
according to equation (8). By inserting this f in the constraints

∫
gif dz = di, at first

exp(−µ0)/µ1 = 1 and exp(−µ0)/µ2
1 = 1 and then the solution µ0 = 0 and µ1 = 1

results. This finally leads to f = exp(−z) as must be expected.
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There was another criticism concerning the input of observations vi of the same measur-
and V obtained from independently repeated measurements under nominally identical
conditions. The Bayes theorem leads with a known or assumed likelihood lV (z, v) for
a single measurement and a prior f∗0 to l =

∏
i lV (z, vi) and f∗ = C l f∗0 . All this is

known and can therefore be taken as the equivalent input information to obtain the
corresponding PME solution f . This is quite trivial if f0 in equation (49) is properly
understood as the already known input density (not necessarily identical with f∗0 ), that
is, as the known f∗ of the Bayes theorem. Without any further constraint, then f = f∗

readily follows from equation (8).

Although the PME and Bayes theorem yield identical densities f for equivalent input
information, neither of these methods can be dispensed with. In contrast to the PME, the
Bayes theorem requires the knowledge or assumption of the likelihood l, but represents,
on the other hand, a quite general and powerful, formal probability relation.

Appendix B: The shortest coverage interval

The lower limit y< and upper limit y> of the shortest coverage interval of a non-negative
measurand with a specified coverage probability 1− γ are determined in this appendix
B for
(a) known general distributions,
(b) the truncated GD of ISO 11929,
(c) not explicitly known general distributions by Monte Carlo (MC) application.

In figure 3, they are numerically compared in case (b) with the limits y/ and y. of
the probabilistically symmetric coverage interval. The shortest coverage interval has
interesting features for practical applications and meets all the metrological demands
laid down in subsection 6.3. In particular, it covers the possible measurand value 0 if
and only if this value 0 is actually “highly probable”.

B.1 General case

In order to determine the limits y< and y> of the shortest coverage interval for the
coverage probability 1 − γ, let the density f(y) = fY (y | a, y ≥ 0) of the estimator Y
of the non-negative measurand and its distribution function F (y) = FY (y | a, y ≥ 0) =∫ y
0
f(η) dη be given for y > 0. In addition, F (y) = 0 for y ≤ 0 and f(y) = 0 for y < 0

and a = f(0). The density f(y) is thus discontinuous at y = 0. It jumps from 0 to a
at this abscissa because of the truncation. This fact causes a difficulty which has to
be removed without any consequences in integrals where f(y) is involved. See the next
paragraph.

The difference y> − y< is now minimized with the constraint F (y>)− F (y<) = 1− γ,
which is multiplied by a Lagrange multiplier λ and added to the difference. This leads
to

y> − y< + λ · (F (y>)− F (y<)) = min . (50)

If this expression is minimized instead of the limit difference itself, then the same solu-
tions follow since the constraint is a constant. The partial derivatives of the expression
with respect to the limits must be zero for the minimum. Thus,

1 + λf(y>) = 0 ; 1 + λf(y<) = 0 . (51)
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Figure 3: Best estimate ẑ and standard uncertainty u(ẑ) of the scaled measurand Z =
Y/u(y0), lower limit z/ and upper limit z. of the probabilistically symmetric coverage
interval, and lower limit z< and upper limit z> of the shortest coverage interval. ∆ is
the difference of the widths of the two coverage intervals. All these characteristic values
are shown as functions of the primary measurement result z0 = y0/u(y0), scaled with
the standard uncertainty u(y0), and calculated with the truncated Gaussian density
according to ISO 11929. The probability γ = 0.05 is chosen. It is z< = 0 for abscissas
z0 ≤ 1.668. ∆ has a maximum 0.251 at z0 = 0.15. The straight lines are asymptotes
and show the usual symmetric coverage interval limits.

This means solving the two equations

f(y>) = f(y<) ; (52)

F (y>)− F (y<) = 1− γ (53)

for the limits. Notice the lack of a solution in equation (52) if f(y>) < a due to the
jump of f(y) from 0 to a at y = 0. This difficulty is removed by explicitly stipulating
y< = 0 in this case.

In exceptional cases, a polymodal density can have several or even an infinity of possibly
overlapping shortest coverage intervals for the same given γ. For instance, the rectan-
gular density f(y) = 1 (0 ≤ y ≤ 1) and = 0 (elsewhere) has an infinity of overlapping
shortest coverage intervals of width (1− γ).
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B.2 Gaussian case

In the case of ISO 11929 with a given primary measurement result y0 with the associated
standard uncertainty u(y0) according to GUM, f(y) is a GD truncated at y = 0 and
renormalized. By introducing the scaled random variable Z = Y/u(y0) with z = y/u(y0)
and z0 = y0/u(y0) for more brevity and convenience, it reads

fZ(z) =
exp

(
−(z − z0)2/2

)
ω
√

2π
; ω = Φ(z0) (54)

FZ(z) =
Φ(z − z0)− (1− ω)

ω
(55)

for z ≥ 0 and fZ(z) = FZ(z) = 0 for z < 0. Moreover, a = fZ(0) = exp(−z20/2)/(ω
√

2π).
The standardized Gaussian distribution function Φ(t) is used with its property Φ(−t) =
1− Φ(t).

The density fZ(z) is symmetric with respect to z0 in the range 0 < z < 2z0. Thus,
according to equation (52), z>,< = z0 ± b with some b as long as z< > 0. Equations
(53) and (55) then lead to Φ(b)−Φ(−b) = 2Φ(b)−1 = ω · (1−γ). The solution is b = kp
with p = (1 +ω · (1−γ))/2. Here, kp is the p-quantile of Φ(t), the solution of Φ(kp) = p.
If y< < 0 resulted, then y< = 0 has to be set because of the truncation and jump of
fZ(z) from 0 to a at z = 0. Hence it follows FZ(z>) = 1− γ according to equation (53)
with F (y<) = 0 and, moreover, Φ(b) = q = 1 − ωγ with equation (55). Thus, b = kq.
The final complete result of the limits of the shortest coverage interval is either

z>,< = z0 ± kp ; p = (1 + ω · (1− γ))/2 (56)

or, if z< < 0 were to result,

z< = 0 ; z> = z0 + kq ; q = 1− ωγ . (57)

Equation (56) shows the symmetry of z> and z< with respect to z0. Identical results
are obtained from equations (56) and (57) if kp = kq = z0 or p = q = ω = 1/(1 + γ)
and z0 = k1/(1+γ) = 1.668 for γ = 0.05. See figure 3 for numerical values as functions
of z0, also in comparision with the limits z/ and z. of the probabilistically symmetric
coverage interval. The kinks of the curves of z> and z< are caused by the change between
equations (56) and (57). The width difference ∆ = (z. − z /) − (z> − z<) of the two
coverage intervals is also shown. It has a maximum 0.251 at z0 = 0.15 for γ = 0.05 and
disapears for large z0. The computing efforts for each of the interval limits are fairly
similar. Subroutines for Φ(t) and kp are available or can easily be written according to
ISO 11929 [1].

B.3 Monte Carlo application

In more general cases, f(y) and F (y) are often not explicitly known since the integrals
according to equations (3) cannot be easily solved. A Monte Carlo (MC) method should
then be applied [25, 26]. A large number N of MC samples y(i) ≥ 0 (i = 1, . . . , N)
and, in addition, y(0) = 0 are first sorted and renumbered by magnitude in a table
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such that y(i−1) ≤ y(i). A function Q(p) is then defined in this table by Q(i/N) = y(i)

(i = 0, . . . , N) and linear interpolation for real p with 0 ≤ p ≤ 1. This function Q(p) is
unique, continuous, piecewise linear and non-decreasing. It is an approximation of the
p-quantile of the measurand estimator, i.e. the solution y of F (y) = p. In particular, the
coverage interval limits y/ = Q(γ/2) and y. = Q(1− γ/2) are obtained.

The determination of the limits y< and y> of the shortest coverage interval cannot
easily be carried out by equations (52) and (53) since f(y) is not available and cannot
be approximated sufficiently well by MC as the derivative of F (y). But the function Q(p)
can be used to directly minimize the interval width w = y> − y< with y< = Q(p) and
y> = Q(1−γ+p) according to equation (53) by systematically or randomly varying the
probability p in a range 0 ≤ p′ ≤ p ≤ p′′ ≤ γ. Here, p′ and p′′ are limits already known
to enclose the p that minimizes the width w. At the beginning, p′ = 0 and p′′ = γ. Their
difference can be made smaller and smaller during the iterative minimization until the
p of the minimum w is caught with sufficient accuracy. Q(p) is not needed in the range
γ < p < 1−γ. Therefore, the values y(i) in a corresponding, large middle part of the table
need not be sorted. This suggestion may possibly help to save considerable computing
time since sorting is a time-consuming procedure if N is large. The computational MC
effort was tested and found to be small and acceptable, compared with the effort for
simulating N measurements.

Appendix C: Uncertainty calculation in the case of random influences by
sample treatment

The following analytical BSt approach serves for the mathematical derivation of equa-
tion (35), recommended in subsection 5.8 to replace equation (B.7) of ISO 11929 [1].
Since the present appendix C describes a purely analytical calculation, subsection 5.8
should first be read as an introduction and as a justification of the Gaussian and gamma
densities, and the Poisson probability functions used.

C.1 Approach without counting uncertainties

Let m data xi be independently drawn from Gaussian densities (GD) of random vari-
ables Xi with the same, but unknown expectation µ and variance σ2 to be determined.
These parameters are values (estimates) of random variables (estimators) M and S2, re-
spectively, where M is assigned to the measurand Y in question (M = Y ). The densities
of Xi are

fX(x |M = µ, S2 = σ2) =
exp

(
− (x− µ)2/(2σ2)

)
√

2πσ2
; (58)

fX(x | µ, σ2) =
m∏
i=1

fXi
(xi | µ, σ2) =

exp
(
−
∑m
i=1(xi − µ)2/(2σ2)

)
(
√

2πσ2)m
. (59)

The Bayes theorem and the PME as well (see appendix A.3) then lead to

fM,S2(µ, σ2 | x) = C fX(x | µ, σ2) fM,S2(µ, σ2) = C fX(x | µ, σ2) (1/σ2)

= C
exp

(
−
∑m
i=1(xi − µ)2/(2σ2)

)
σm+1

√
2πσ2/m

. (60)
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For convenience, the variance σ2 is used as a quantity of interest instead of σ itself. Then,
for the prior, fM,S2(µ, σ2) dµdσ2 = const dµdσ2/σ2 should be set since dσ2/σ2 =
2 dσ/σ [15 (2.8.2), 37]. See also subsection 5.8 for the prior ∼1/σ of the parameter
σ. The constants

√
2π are included in the normalization constant C. For convenience

in the following, one of them is retained in the denominator and
√
m is taken from

C. The sum can be rearranged with
∑m
i=1(xi − x) = 0. This yields

∑m
i=1(xi − µ)2 =∑m

i=1((xi − x)− (µ− x))2 =
∑m
i=1(xi − x)2 − 2

∑m
i=1(xi − x)(µ− x) +

∑m
i=1(µ− x)2 =∑m

i=1(xi − x)2 +m (µ− x)2 and, accordingly,

fM,S2(µ, σ2 | x) = C
exp

(
−
(
A+m (µ− x)2

)
/(2σ2)

)
σm+1

√
2πσ2/m

; A =

m∑
i=1

(xi − x)2 . (61)

For any fixed σ2, this is a GD of M with expectation x and variance σ2/m. Thus,

E (M | σ2, x) = E (M | x) = µ̂ = x ; Var (M | σ2, x) = σ2/m . (62)

The following integrals are needed for the best estimate s2 = E (S2 | x) of σ2 and the
squared standard uncertainty u2(µ̂) = Var (M | x) associated with the best estimate
µ̂ = x = E (M | x) of the measurand M = Y . The integrations over µ are carried out
first and yield either 1 or σ2/m.

s2 = E (S2 | x) = C

∫ ∞
0

∫ ∞
−∞

σ2 exp
(
−
(
A+m (µ− x)2

)
/(2σ2)

)
σm+1

√
2πσ2/m

dµdσ2

= C

∫ ∞
0

σ2 exp
(
−A/(2σ2)

)
σm+1

dσ2 ; (63)

u2(µ̂) = Var (M | x) = E ((M − µ̂)2 | x) = E ((M − x)2 | x) = E (M2 | x)− x2

= C

∫ ∞
0

∫ ∞
−∞

(µ− x)2
exp

(
−
(
A+m (µ− x)2

)
/(2σ2)

)
σm+1

√
2πσ2/m

dµdσ2

= C

∫ ∞
0

σ2

m

exp
(
−A/(2σ2)

)
σm+1

dσ2 = s2/m ; (64)

1/C =

∫ ∞
0

∫ ∞
−∞

exp
(
−
(
A+m (µ− x)2

)
/(2σ2)

)
σm+1

√
2πσ2/m

dµdσ2

=

∫ ∞
0

exp
(
−A/(2σ2)

)
σm+1

dσ2 . (65)

Accordingly, E (M2 | x) = s2/m+ x2 and Var (M | x) = s2/m. Any integral

Ik =

∫ ∞
0

exp
(
−A/(2σ2)

)
σk

dσ2 (66)

is carried out by substituting A/(2σ2) = t or σ2 = A/(2t) and dσ2 = −(A/2)(dt/t2).
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Then,

Ik =

∫ ∞
0

exp(−t)
(A/(2t))k/2

(A/2)(dt/t2) = (2/A)k/2−1
∫ ∞
0

tk/2−2 exp(−t) dt

= (2/A)k/2−1Γ(k/2− 1) . (67)

With k = m± 1 and equations (63) and (65),

s2 = E (S2 | x) =
Im−1
Im+1

=
A

2
· Γ((m− 3)/2)

Γ((m− 1)/2)
=

A

m− 3
=

1

m− 3

m∑
i=1

(xi − x)2 (68)

is obtained since Γ(z+1) = zΓ(z) or Γ((m−1)/2) = ((m−3)/2)Γ((m−3)/2). This s2 =
A/(m− 3) has to be compared with the similar s2 = A/(m− 1) according to equation
(B.7) of ISO 11929. m > 3 is required. u2(µ̂) = u2(ŷ) = s2/m remains according
to equation (64). It can easily be seen that (m − 3) does not come from counting
uncertainties since these are not involved here.

By integrating equation (61) over σ2 and using equations (66) and (67) with A replaced
by A+m(µ− x)2, the density

fM (µ | x) =
C

(A+m (µ− x)2)m/2
(69)

is obtained. The substitution t = (µ − x)/
√
A/((m− 1)m) then leads to the Student

density fT (t) = C · (1 + t2/(m − 1))−m/2 with m − 1 degrees of freedom, E (T ) = 0
and Var (T ) = (m − 1)/(m − 3). Hence it follows by reversing the substitution that
µ̂ = E (M) = x and u2(µ̂) = Var (M) = s2/m with s2 = A/(m− 3) as in equation (68).

C.2 Including counting uncertainties

Similarly to appendix C.1, let m data ni be independently drawn from Poisson distri-
butions of Ni with parameters ξi as values of random variables Xi.

According to the Bayes theorem, the density of X is proportional to the Poisson prob-
ability function of N , times the prior C/ξ of X (see subsection 5.7), i.e.

fX(ξ | n) = C fN (n | ξ) fX(ξ) =
ξn exp(−ξ)

n!
· C
ξ

=
ξn−1 exp(−ξ)

(n− 1)!
(70)

is a gamma density of X with x = E (X | n) = n and u2(x) = Var (X | n) = n.

fX(ξξξ | n) =
m∏
i=1

fXi
(ξi | ni) =

m∏
i=1

ξni−1
i exp(−ξi)

(ni − 1)!
; (71)

f = fM,S2,X(µ, σ2, ξξξ | n) = fM,S2(µ, σ2 | ξξξ) fX(ξξξ | n)

= C
exp

(
−
(
A+m (µ− ξ)2

)
/(2σ2)

)
σm+1

√
2πσ2/m

·
m∏
i=1

ξni−1
i exp(−ξi)

(ni − 1)!
(72)
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according to equation (61) and with x replaced by ξξξ, in particular, A =
∑m
i=1(ξi − ξ)2.

By marginalization,

fM,S2(µ, σ2 | n) =

∫ ∞
0

fM,S2,X(µ, σ2, ξξξ | n) dξξξ (73)

is obtained, which leads with equations (72) and (73) for any function h(M,S2) to

E (h(M,S2) | n) =

∫ ∞
0

E (h(M,S2) | ξξξ) fX(ξξξ | n) dξξξ . (74)

This is an important equation. It is first applied with h = M to E (M | ξξξ) = ξ according
to equation (62) and yields

µ̂ = E (M | n) =

∫ ∞
0

ξ fX(ξξξ | n) dξξξ = n . (75)

It is similarly applied with h = S2 to E (S2 | ξξξ) = A/(m−3) according to equation (68)

E (S2 | n) =
1

m− 3

∫ ∞
0

m∑
i=1

(
ξi − ξ

)2
fX(ξξξ | n) dξξξ

=
1

m− 3

(
E
( m∑
i=1

X2
i | n

)
−mE

(
X

2 | n
))

. (76)

With E (X | n) = n ; E (X2 | n) = n(n + 1) ; Var (X | n) = n ; E (X | n) = n ;
Var (X | n) = n/m and n2 =

∑m
i=1 n

2
i /m, it follows from equation (76)

E
( m∑
i=1

X2
i | n

)
=

m∑
i=1

E (X2
i | ni) = m · n(n+ 1) = m · (n2 + n) ; (77)

E (X
2 | n) = Var (X | n) +

(
E (X | n)

)2
= n/m+ n2 ; (78)

E (S2 | n) =
m (n2 + n)− (n+mn2)

m− 3
=

(m− 1)n+m (n2 − n2)

m− 3

=
m− 1

m− 3
n+

1

m− 3

m∑
i=1

(ni − n)2 =
m− 1

m− 3
(n+ s20) (79)

where s20 means s2 according to equation (B.7) of ISO 11929. The first term is caused
by the counting uncertainties. If these are set to zero, the term vanishes and equation
(68) again follows since in this case n = x; Var (X | n) = n and E (X2 | n) = n2 between
equations (76) and (77).

E (S2 | n) is the best estimate of σ2. Divided by m, it is used in form of s2/m as
a squared standard uncertainty needed in annex B.4 of ISO 11929. This is no longer
possible here as is now shown. The squared standard uncertainty associated with ŷ =
µ̂ = E (M | n) = n according to equation (75) is u2(n) = E ((M −n)2 | n), which differs

45



here from E (S2 | n)/m. This is an important statement. However, both expressions
remain to be related to one another.

u2(n) = E ((M − n)2 | n) = E (M2 | n)− n2 ; (80)

E (M2 | n) =

∫ ∞
0

E
(
(M − ξ + ξ)2 | ξξξ

)
fX(ξξξ | n) dξξξ

=

∫ ∞
0

∫ ∞
0

∫ ∞
−∞

(
(µ− ξ)2 + 2(µ− ξ)ξ + ξ

2)
f dµdσ2 dξξξ (81)

according to equation (74) with h = M2 and with f from equation (72). The integration
over µ yields σ2/m similar to equation (64) for the first term and a vanishing second
term. The third term does not depend on µ and σ2. The integration over σ2 then results
in the continuation

=

∫ ∞
0

(
E (S2 | ξξξ)/m+ ξ

2)
fX(ξξξ | n) dξξξ = E (S2 | n)/m+ E (X

2 | n) . (82)

Equation (74) is used again with h = S2. Finally, with equations (78) and (80),

u2(n) = E (M2 | n)− n2 = E (S2 | n)/m+ E (X
2 | n)− n2 =

E (S2 | n) + n

m

=
1

m

(
n+

m− 1

m− 3
n+

1

m− 3

m∑
i=1

(ni − n)2
)

(83)

is obtained. This is the very formula that should replace equation (B.7) of ISO 11929.

The density fM (µ | n) of the measurand M = Y should be explicitly available for the
determination of the characteristic limits, for instance, the limits of a coverage interval.
This density follows by marginalization from f according to equation (72) similar to
equation (73):

fM (µ | n) =

∫ ∞
0

∫ ∞
0

fM,S2,X(µ, σ2, ξξξ | n) dσ2 dξξξ

= C

∫ ∞
0

∫ ∞
0

exp
(
−
(
A+m (µ− ξ)2

)
/(2σ2)

)
σm+1

√
2πσ2/m

·
m∏
i=1

ξni−1
i exp(−ξi)

(ni − 1)!
dσ2 dξξξ . (84)

The integration over σ2 can be carried out by means of equations (66) and (67) with A
replaced by A+m (µ− ξ)2 and k = m+ 2 and including constant factors into C as far
as possible and appropriate. With M = Y and µ = y, this finally leads to

fY = fY (y | n) = C

∫ ∞
0

(
A+m (y − ξ)2

)−m/2 · m∏
i=1

ξni−1
i exp(−ξi) dξξξ . (85)

The expectation n and the variance u2(n) of this distribution fY are known according to
equations (75) and (83), respectively. However, the determination of the quantiles for the
characteristic limits seems to require difficult, multidimensional, numerical integrations
by MC. Other properties of fY are discussed below equation (37).
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Appendix D: Glossary of some important terms and symbols

Z general random variable; general estimator of a physical quantity or of the scaled
measurand

z, ζ values of Z; estimates of the physical quantity; particular values are marked by
affixes

u(z) measurement uncertainty of Z associated with z; standard uncertainty if z is
the expectation of Z

Y estimator assigned to the non-negative measurand; also used for the measurand
itself

y value of Y ; general estimate of the true measurand value; possible true measur-
and value if y ≥ 0

u(y) measurement uncertainty of Y associated with y
a information set of data, conditions, assumptions, relations, and other relevant

information
fY (y | a) probability density of Y given the information a
FY (y | a) = Pr (Y ≤ y | a) =

∫ y
−∞ fY (η | a) dη

distribution function of Y given the information a
X vector of input quantity estimators Xi

ξξξ vector of general values ξi of Xi

fX(ξξξ | a) probability density of X given the information a
G(X) model function, Y = G(X) model equation
x vector of given particular values of X
Ux uncertainty (covariance) matrix associated with x
ỹ assumed true measurand value
ã(ỹ) modification of a as a function of ỹ
y0 primary estimate of the true measurand value
u(y0) standard uncertainty associated with y0
ŷ best estimate of the true measurand value
y/, y. lower and upper limits of the probabilistically symmetric coverage interval
y<, y> lower and upper limits of the shortest coverage interval
y∗ decision threshold
y] detection limit
y(k) Monte Carlo samples sorted by magnitude (k = 1, . . .)
α probability of the physical effect being falsely recognized as present although

ỹ = 0 (false positive decision)
β probability of the physical effect being falsely recognized as absent although

ỹ > 0 (false negative decision)
1− γ coverage probability; probability that the coverage interval contains the true

measurand value
Ii particular integrals (i = 0, . . . , 7)
H(t) Heaviside unit step function
δ(t) Dirac delta function
Φ(t) standardized Gaussian distribution function
kp quantile of Φ(t) for the probability p
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