
BAYESIAN DECISION THRESHOLD, DETECTION LIMIT AND
CONFIDENCE LIMITS IN IONISING-RADIATION
MEASUREMENT
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Based on Bayesian statistics and the Bayesian theory of measurement uncertainty, characteristic limits such as the decision
threshold, detection limit and limits of a confidence interval can be calculated taking into account all sources of uncertainty.
This approach consists of the complete evaluation of a measurement according to the ISO Guide to the Expression of
Uncertainty in Measurement (GUM) and the successive determination of the characteristic limits by using the standard
uncertainty obtained from the evaluation. This procedure is elaborated here for several particular models of evaluation.
It is, however, so general that it allows for a large variety of applications to similar measurements. It is proposed for the
revision of those parts of DIN 25482 and ISO 11929 that are still based on conventional statistics and, therefore, do not
allow to take completely into account all the components of measurement uncertainty in the calculation of the characteristic
limits.

INTRODUCTION

The recognition and detection of ionising radiation
are indispensable basic pre-requisites of radiation
protection. For this purpose, the standard series
DIN 25482(1–11) and the corresponding standard
series ISO 11929(12–19) provide characteristic limits,
i.e. decision thresholds, detection limits and confi-
dence limits, for a diversity of application fields. The
decision threshold allows a decision to be made for a
measurement on whether or not, for instance, radia-
tion of a possibly radioactive sample is present. The
detection limit allows a decision on whether or not
the measurement procedure intended for application
to the measurement meets the requirements to be
fulfilled and is, therefore, appropriate for the mea-
surement purpose. Confidence limits enclose with a
specified probability the true value of the measurand
to be measured.

Because of recent developments in metrology
concerning measurement uncertainty, i.e. DIN
1319(20,21) and ISO Guide to the Expression of
Uncertainty in Measurement (GUM)(22), the older
Parts 1–7 (except Part 4) of DIN 25482(1–7) and the
corresponding Parts 1–4 of ISO 11929(12–15) urgently
need a revision based on the common, already laid
statistical foundation of Part 10 of DIN 25482(8) and

Part 7 of ISO 11929(18). The modern Parts 11–13 of
DIN 25482(9–13) and Parts 5–8 of ISO 11929(16–19)

are already established on this basis. But since the
responsible working group DIN NMP 722 was first
suspended and finally disbanded by DIN, the
authors, feeling responsible for radiation protection
and, being members of the working group ‘Detection
limits’ (AK SIGMA) of the German Radiation
Protection Association (Fachverband für Strahlen-
schutz), elaborated a proposal(23,24) for the revision
of DIN 25482 and ISO 11929. This paper outlines
the general foundation of the Bayesian characteristic
limits and gives exemplarily several particular appli-
cations to measurements of ionising radiation.

UNCERTAINTY IN MEASUREMENT

The starting point of any analysis is the definition of
the quantity Y to be measured and for which the
characteristic limit is to be determined. This measur-
and [For the proper use of terms of metrology see
Ref. (25).] is, for instance, the concentration of an
element or an activity of radionuclides in a sample.
The measurand is connected to input quantities
Xi (i ¼ 1, . . . , m), which originate from measure-
ments or from other sources of information by a
model of evaluation. Examples of input quantities
are net peak areas from gamma spectra, efficiency
data of a detector, sample masses and chemical�Corresponding author: michel@zsr.uni-hannover.de
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yields. The model of evaluation is a mathematical
relationship,

Y ¼ GðX1, X2, . . . , XmÞ: ð1Þ

Note, that the model function G need not necessarily
be explicitly available. The model may also be given
in the form of a computer code.

Measurements yield estimates xi of the true values
of the input quantities Xi. The estimates xi are asso-
ciated with the standard uncertainties u(xi). The
evaluation analysis yields an estimate y of the mea-
surand Y using y as an estimate of the true value Z of
Y in Equation 1 and one obtains

y ¼ Gðx1, x2, . . . , xmÞ: ð2Þ

If the input quantities Xi are uncorrelated, the stan-
dard uncertainty u(y) associated with y is calculated
as the positive square root of the variance,

u2ðyÞ ¼
Xm

i¼1

@G

@xi

� �2

· u2ðxiÞ: ð3Þ

with ci� @G/@xi being the sensitivity coefficients.
If the input quantities Xi are correlated, the

standard uncertainty u(y) has to be calculated
accordingly using covariances u(xi, xj)

(14).

u2ðyÞ ¼
Xm

i¼1

Xm

j¼1

ci · cj · uðxi, xjÞ, ð4Þ

with u(xi, xi) ¼ u2(xi).
Given n repeated measurements of the input quan-

tities Xi and Xj with the measured values xi,k and xj,k

(k ¼ 1, . . . , n) and the respective arithmetic means
�xxi;k and �xxj;k, then the estimates xi ¼ �xxi;k and xj ¼ �xxj;k

follow and the covariances u(xi, xj) are calculated by

uðxi, xjÞ ¼
1

n � 1

Xn

k¼1

ðxi;k � xiÞðxj;k � xjÞ: ð5Þ

If the partial derivatives are not explicitly available,
they can be numerically sufficiently well approxi-
mated by using the standard uncertainty u(xi) as an
increment of xi,

@G

@xi

¼ 1

uðxiÞ
· ðGðx1, . . . , xi þ uðxiÞ/2, . . . , xmÞ

�Gðx1, . . . , xi�uðxiÞ/2, . . . , xmÞÞ ð6Þ

The standard uncertainties generally have to be eva-
luated according to the GUM(22) well in accordance
with guidelines of other international bodies(26–28).
In the GUM, uncertainties are evaluated either
by ‘statistical methods’ (Type A) or by ‘other
means’ (Type B). Type A uncertainties can be evalu-
ated from repeated or counting measurements, while

Type B uncertainties cannot. They are for instance
uncertainties given in certificates of standard refer-
ence materials or of calibration radiation sources
used in the evaluation of a measurement. The
evident contradiction in using different types of
statistics in the definitions of the two types of
uncertainties was recently overcome by the esta-
blishment of a Bayesian theory of measurement
uncertainty(29,30). In this theory, uncertainties of all
types are consistently determined. They quantita-
tively express the actual state of incomplete knowl-
edge about the quantities involved.

BAYESIAN STATISTICS IN MEASUREMENT

The basic difference between conventional and
Bayesian statistics lies in the different use of the term
probability. Considering measurements, conven-
tional statistics describes the probability distribution
f (y j Z), i.e. the conditional distribution of estimates
y given the true value Z of the measurand Y. Since the
true value of a measurand is principally unknown, it
is the basic task of an experiment to make statements
about it. Bayesian statistics allows the calculation of
the probability distribution f (Z j y) of the true value
Z of a measurand Y given the measured estimate y.
The measurement uncertainty and the characteristic
limits are based on the distributions f (y j Z) and
f (Z j y). These implicitly depend on further condi-
tions and information such as the model, measure-
ment data and associated uncertainties.

In order to establish f (Z j y), one uses an approach,
which separates the information about the measur-
and obtained from the actual experiment from other
information available about the measurand by

f ðZ j yÞ ¼ C · f0ðZ j yÞ · f ðZÞ: ð7Þ

f0(Z j y) is the probability distribution that the mea-
surand Y has the true value Z if only the measured
value y and the associated uncertainty u(y) are
given. It only accounts for the measured values
and neglects any other information about the mea-
surand. f (Z) represents all the information about
the measurand available before the experiment is
performed. Therefore, it does not depend on y. C is
a normalisation constant.

If, for instance, an activity of a radiation source or
a concentration of an element is the measurand,
there exists the meaningful information that the
measurand is non-negative (Z� 0) before the mea-
surement is carried out. This yields for f (Z):

f ðZÞ ¼
const ðZ � 0Þ

0 ðZ< 0Þ:

�
ð8Þ

Note, that the actual result y of a measurement,
for instance a net count rate, can be negative. But
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the experimentalist knows a priori without perform-
ing an experiment that the true value Z is non-
negative. All non-negative values of the measurand
have the same a priori probability if there is no other
information about the true value of the measurand
before the measurement has been performed.

Since f0(Z j y) in essence considers the experimental
information, the expectation E0(Z) ¼ y and the
variance Var0(Z) ¼ u2(y) should hold true for the
probability distribution f0(Z j y).

According to Weise and Wöger(29,30), the pro-
bability distribution f (Z j y) can be determined by
applying the principle of maximum (information)
entropy S(31),

S ¼ �
Z

f ðZ j yÞ · lnð f0ðZ j yÞÞdZ ¼ max: ð9Þ

Equation 9 can be solved with the constraints
E0(Z) ¼ y and Var0(Z) ¼ u2(y) by the method of
Lagrangian multiplicators and one obtains the
result

f ðZ j yÞ ¼ C · f ðZÞ · exp
�
�ðZ� yÞ2

/ð2 · u2ðyÞÞ
�
:

ð10Þ

Accordingly, the distribution f (Z j y) is a product of
the model prior f (Z) and a gaussian N(y, u(y)), i.e. a
truncated gaussian (Figure 1). Note, that the gaus-
sian in Equation 10 is not an approximation as in
conventional statistics or a distribution of measured
values from repeated or counting measurements.
It is instead the explicit result of maximising the
information entropy and expresses the state of
knowledge about the measurand Y.

After f (Z j y) is obtained, the Bayes theorem also
allows the calculation of the probability distribution
f (y j Z) of an estimate y given the true value Z of the
measurand Y,

f ðy j ZÞ · f ðZÞ ¼ f ðZ j yÞ · f ðyÞ: ð11Þ

The distribution f (y) is uniform for all possible mea-
surement results y, and f (Z) is uniform for all Z� 0
according to Equation 8. Thus, f (y j Z) is obtained
from Equations 10 and 11 by approximating the now
not available u(y) by a function ~uuðZÞ:

f ðy j ZÞ ¼ C · expð�ðy � ZÞ2/ð2 · ~uu2ðZÞÞÞ ðZ � 0Þ:
ð12Þ

The probability distribution f (y j Z) is a gaussian for
a given true value Z of the measurand with the stan-
dard uncertainty ~uuðZÞ. Note, that the true value Z of
the measurand Y is now a parameter in Equation 12
and that the variance u2(y) of the probability distri-
bution f (Z j y) equals the variance ~uu2ðZÞ of the proba-
bility distribution f (y j Z),

u2ðyÞ ¼ ~uu2ðZÞ: ð13Þ

CALCULATION OF THE STANDARD
UNCERTAINTY AS A FUNCTION OF THE
TRUE VALUE OF THE MEASURAND

For the provision and numerical calculation of the
decision threshold and detection limit, the standard
uncertainty of the measurand is needed as a function
�uuðZÞ of the true value Z� 0 of the measurand. This
function has to be determined in a way similar to
u(y) within the framework of the evaluation of the
measurements by application of DIN 1319-3(20),
DIN 1319-4(21), GUM(22) or DIN V ENV 13005(26).
In most cases, ~uuðZÞ has to be formed as a positive
square root of a variance function ~uu2ðZÞ calculated
first. This function must be defined, unique and con-
tinuous for all Z� 0 and must not assume negative
values.

In some cases, ~uuðZÞ can be explicitly specified,
provided that u(x1) is given as a function h1(x1)
of x1. In such cases, y has to be replaced by Z and
Equation 2 must be solved for the estimate x1 of the
input quantity X1, which in the following is always
taken as the gross effect quantity. With a specified Z,
the value x1 can also be calculated numerically from
Equation 2, for instance, by means of an iteration
procedure, which results in x1 as a function of Z
and x2, . . . , xm. This function has to replace x1

in Equation 3 and in u(x1) ¼ h1(x1), which finally
yields ~uuðZÞ instead of u(y). In most cases of the
models dealt with in this paper, one has to proceed
in this way. Otherwise, ~uuðZÞ can be obtained as an

)( yf η

y0

)(ηf

)(0 yf η

η

Figure 1. Illustration of the probability distribution given
in Equation 10 for a non-negative measurand Y.
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approximation by interpolation from the data yj and
u(yj) of several measurements (Figure 2).

DECISION THRESHOLD AND
DETECTION LIMIT

Without a detailed mathematical foundation of
Bayesian characteristic limits, which may be found
elsewhere(32), we can now define the characteristic
limits for a non-negative measurand Y, which is,
for instance, a concentration of an element or an
activity of a radionuclide in a sample. The true
value Z is zero if the element or the radionuclide is
not present. The decision threshold and the detection
limit are defined(32) on the basis of statistically test-
ing the null hypothesis H0: Z ¼ 0 against the alter-
native hypothesis H1: Z> 0.

A decision quantity Y has to be attributed to the
measurand, which being a random variable, is like-
wise an estimator of the measurand. It is postulated
that the expectation E(Y) of the decision quantity Y
is equal to the true value Z of the measurand. A value
y of the estimator Y derived from measurements is
an estimate of the measurand. As a result of the
measurement, y and the associated standard uncer-
tainty u(y) are derived according to the GUM(22) as
a complete result of the measurement. y and u(y)
have to be derived by evaluation of measured quan-
tities and of other information by way of the mathe-
matical model, which takes into account all relevant
quantities. Generally, it will not be explicitly made
use of the fact that the measurand is non-negative.
Therefore, y may become negative, in particular,
if the true value of the measurand is close to zero.

For the determination of the decision threshold
and the detection limit, the standard uncertainty of

the decision quantity has to be calculated, if possible,
as a function ~uuðZÞ of the true value Z of the measur-
and. In case this is not possible, approximate solu-
tions are described below.

Then, the decision threshold y� (Figure 3) is a
characteristic limit, which, when exceeded by a result
y of a measurement, helps one to decide that the
element or radionuclide is present in the sample.
If y� y�, the null hypothesis, H0: Z ¼ 0, cannot be
rejected and one decides that the element or radionu-
clide is not found in this sample. If this decision rule
P(y> y� j Z ¼ 0) ¼ a is observed, a wrong acceptance
of the alternative hypothesis, H1: Z > 0, occurs with
the probability a, which is the probability of the
error of the first kind of the statistical test used.

The decision threshold is given by

y� ¼ k1�a · ~uuð0Þ, ð14Þ

with k1�a being the (1 – a)-quantile of the standard-
ised normal distribution. ~uuð0Þ is the uncertainty
of the measurand if its true value equals zero. If the
approximation ~uuðZ ¼ 0Þ ¼ uðyÞ is sufficient, one
obtains

y� ¼ k1�a · uðyÞ: ð15Þ

The detection limit Z� (Figure 4) is the smallest true
value of the measurand detectable with the measur-
ing method. It is defined by P(y < y� j Z ¼ Z�) ¼ b.
The detection limit Z� is sufficiently larger than the
decision threshold y� such that the probability of
y< y� equals the probability b of the error of the
second kind in the case of Z ¼ Z�. The detection limit
is given by

Z� ¼ y� þ k1�b · ~uuðZ�Þ, ð16Þ

with k1–b being the (1–b)-quantile of the standard-
ised normal distribution.

)( ηyf

*y *η0
η

*)( ηη =yf

)0( =ηyf

β α

Figure 3. Illustration of the decision threshold y� and the
detection limit Z�.0 η

)(~2 ηu

y

)(2 yu

)0(~2u

Figure 2. Illustration of the function ~uu2ðZÞ and the
interpolation formula of Equation 18.
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Equation 16 is an implicit one. The detection limit
can be calculated from it by iteration using, for
example, the starting approximation Z� ¼ 2 · y�.

For the numerical calculation of the decision
threshold and the detection limit, the function ~uuðZÞ
is needed, which gives the standard uncertainty of
the decision quantity as a function of the true value
Z of the measurand. This function generally has to be
determined in the course of the evaluation of the
measurement according to the GUM(22). Often this
function is only slowly increasing. Therefore, it is
justified in many cases to use the approximation
~uuðZÞ ¼ uðyÞ. If the approximation ~uuðZÞ ¼ uðyÞ is
sufficient for all true values Z, then

Z� ¼ ðk1�a þ k1�bÞ · uðyÞ, ð17Þ

is valid.
This applies in particular if the primary estimate

y of the measurand is not much larger than its
standard uncertainty u(y). Frequently, the value of
y is calculated as the difference (net effect) of two
quantity values of approximately equal size with x1

being the gross effect and x0 being the background
or blank effect, both obtained from independent
measurements. In this case of y ¼ x1� x0 one gets
u2(y) ¼ u2(x1)þ u2(x0) with the standard uncertain-
ties u(x1) and u(x0) associated with x1 and x0, respec-
tively. From this, one obtains ~uuð0Þ ¼ 2 · u2ðx0Þ, since
for Z ¼ 0 one expects x1 ¼ x0.

If only ~uuð0Þ and u(y) are known, the approxima-
tion by linear interpolation according to Equation 18
is often sufficient for y> 0:

~uu2ðZÞ ¼ ~uu2ð0Þ · ð1 � Z/yÞ þ u2ðyÞ · Z/y: ð18Þ

In many practical cases ~uu2(Z) is a slowly increasing
linear function of Z. This justifies the approxima-
tions above, in particular, the linear interpolation
of ~uu2ðZÞ instead of ~uuðZÞ itself.

With the interpolation formula according to
Equation 18 one gets the approximation

Z� ¼ a þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðk2

1�b � k2
1�aÞ · ~uu2ð0Þ

q
, ð19Þ

with

a ¼ k1�a · ~uuð0Þ þ 1

2
ðk2

1�b/yÞ · ðu2ðyÞ � ~uu2ð0ÞÞ: ð20Þ

For a ¼ b, one receives Z� ¼ 2 · a.

CONFIDENCE LIMITS

The confidence interval (Figure 4) includes for a
result y of a measurement, which exceeds the deci-
sion threshold y�, the true value of the measurand
with a probability 1 – g. It is enclosed by the lower
and upper limit of the confidence interval, Zl and Zu,
respectively, according to

Zl ¼ y�kp · uðyÞ with p ¼ o · ð1 � g/2Þ; ð21Þ

Zu ¼ y þ kq · uðyÞ with q ¼ 1 � o · g/2: ð22Þ

The parameter o is given by

o ¼ 1ffiffiffiffiffiffi
2p

p
Z y/uðyÞ

�1
expð�z2/2Þdz ¼ Fðy/uðyÞÞ: ð23Þ

Values of the function F(t), which is the distribution
function of the standardised normal distribution,
and the quantiles kp of the standardised normal
distribution are tabulated(34).

The limits of the confidence interval to be deter-
mined refer to Z taken as another estimator of the
measurand Y. The confidence limits are not symmet-
rical around the expectation z ¼ E(Z). The proba-
bilities of Z < Z1 and Z > Zu, however, are both equal
to g/2 and the relationship 0 < Zl < Zu is valid. If y
and u(y) are of similar size, this asymmetry of the
confidence interval is clearly visible. But for
y� u(y), the well-known formula

Zl;u ¼ y � k1�g/2 · uðyÞ ð24Þ

is valid as an approximation. Equation 24 is
applicable if

y >� 2 · k1�g/2 · uðyÞ ð25Þ

ASSESSMENT OF AN ANALYTICAL
TECHNIQUE

Having performed a measurement and an evaluation
of the measurement according to the GUM(14), the

)( yf η

y0

)(ηf

)(0 yf η

z uηlη
η

γ /2

γ /2

Figure 4. Illustration of the confidence limits Zl and Zu and
of the best estimate z of the true value Z of a non-negative

measurand Y.
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performance of the analytical technique can be
assessed in the following way.

A measured result has to be compared with the
decision threshold calculated by means of Equation
15. If a result of the measurement y is larger than the
decision threshold y�, one decides that a non-zero
effect quantified by the measurand is observed and
that the element or activity is present in the sample.

To check whether a measurement procedure is
suitable for measuring the measurand, the calculated
detection limit has to be compared with a specified
guideline value, e.g. according to specified require-
ments on the sensitivity of the measurement pro-
cedure from scientific, legal or other reasons. The
detection limit has to be calculated by means of
Equation 16. If the detection limit thus determined
is smaller than the guideline value, the procedure is
suitable for the measurement, otherwise it is not.

If a non-zero effect is observed, i.e. y> y�, the best
estimate z of the measurand (Figure 4) can be calcu-
lated as the expectation of the probability distribu-
tion f (Z j y) and the standard deviation of Z is the
standard uncertainty u(z) associated with the best
estimate z of the measurand Y.

uðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðZÞ:ð26Þ

p
Using o from Equation 23, the best estimate z is
calculated by

z ¼ EðZÞ ¼ y þ uðyÞ · expð�y2/ð2 · u2ðyÞÞÞ
o ·

ffiffiffiffiffiffi
2p

p , ð27Þ

with the associated standard uncertainty u(z)

uðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðyÞ�ðz�yÞ · z

q
: ð28Þ

The following relationships z � y and z � 0 as well as
u(z) � u(y) are valid. For y� u(y) the approxima-
tions z ¼ y and u(z) ¼ u(y) are valid. See Figure 4 for
an illustration of the confidence interval and the best
estimate of the measurand.

APPLICATIONS

Frequently used models

Many applications, in fields other than measure-
ments of ionising radiation, use models of evaluation
of the general mathematical form:

Y ¼GðX1; . . . ;XmÞ¼ðX1�X2 · X3�X4Þ ·
X6 · X8 	 	 	
X5 · X7	 	 	

¼ ðX1�X2 · X3�X4Þ · W ,

with W ¼ X6 · X8 	 	 	
X5 · X7	 	 	

: (29)

In measurements of ionising radiation, X1 ¼ rg

and X2 ¼ r0 frequently are the counting rates of a

gross and a background measurement, respectively.
X3 can, for instance, be a shielding correction(11,17)

and X4 an additional general background correction.
X5, X6,. . . are calibration and correction factors.
If X3 or X4 are not needed, x3 ¼ 1 and u(x3) ¼ 0 or
x4 ¼ 0 and u(x4) ¼ 0 have to be set.

By replacing the quantities in Equation 29 by
their actual estimates xi and w for W one obtains
with x1 ¼ rg ¼ ng/tg and x2 ¼ r0 ¼ n0/t0:

y ¼ Gðx1, . . . , xmÞ ¼ ðx1 � x2 · x3 � x4Þ · w

¼ ðrg � r0 · x3 � x4Þ · w ¼ ng

tg
� n0

t0
x3�x4

� �
· w

ð30Þ

ng and n0 are the numbers of counted events in the
gross and the background measurement of duration
tg and t0, respectively.

With the partial derivatives

@G

@X1
¼ W ;

@G

@X2
¼ �X3 · W ;

@G

@X3
¼ �X2 · W ;

@G

@X4
¼ �W ;

@G

@Xi

¼ �Y

Xi

ði � 5Þ, ð31Þ

and by substituting the estimates xi, w and y,
Equation 3 yields the standard uncertainty u(y) of
the measurand Y associated with y:

u2ðyÞ ¼ w2 · ðu2ðx1Þ þ x2
3 · u2ðx2Þ

þ x2
2 · u2ðx3Þ þ u2ðx4ÞÞ þ y2 · u2

relðwÞ
¼ w2 · ðrg/tg þ x2

3r0/t0 þ r2
0 · u2ðx3Þ

þ u2ðx4ÞÞ þ y2 · u2
relðwÞ ð32Þ

where

u2
relðwÞ ¼

Xm

i¼5

u2ðxiÞ
x2

i

is the sum of the squared relative standard uncer-
tainties of the quantities X5 to Xm. For m < 5, the
values w ¼ 1 and u2

relðwÞ ¼ 0 apply.
For a true value Z one expects

ng ¼ Z/w þ r0 · x3 þ x4 ð33Þ

and with Equation 32 one obtains

~uu2ðZÞ ¼ w2 · ðZ/w þ r0 · x3 þ x4Þ/tg þ x2
3 · r0/t0

�
þ r2

0 · u2ðx3Þ þ u2ðx4Þ
�
þ Z2 · u2

relðwÞ ð34Þ

This yields for Z ¼ 0 the decision threshold

y� ¼ k1�a · ~uuð0Þ ¼ k1�a · w ·ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0 · x3 þx4Þ/tg þx2

3 · r0/t0 þ r2
0 · u2ðx3Þþ u2ðx4Þ

q
ð35Þ
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Note that in this class of models the decision thresh-
old does not depend on the uncertainty of W.

For the detection limit one obtains the equation

Z� ¼ y� þ k1�b · ~uuðZ�Þ ¼ y� þ k1�b ·ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 · ðZ�/w þ r0 · x3 þ x4Þ/tg þ x2

3 · r0

�
/t0

þr2
0 · u2ðx3Þ þ u2ðx4Þ

�
þ Z�2

· u2
relðwÞ

s
ð36Þ

which has to be solved for Z�. Equation 36 has a
solution if k2

1�b · u2
relðwÞ< 1.

Determination of an activity

In ionising-radiation measurements, often the activ-
ity is determined from a measurement of a net count
rate value (rg – r0) as the difference of a gross count
rate value rg ¼ ng/tg and a background count rate
value r0 ¼ n0/t0 with time pre-selection multiplied by
a calibration factor w with the standard uncertainties
u(rg) ¼ rg/tg, u(r0) ¼ r0/t0 and u(w), respectively. This
yields the simple model

y ¼ ðrg � r0Þ · w ¼ ðng/tg � n0/t0Þ · w ð37Þ

which is just a special case of Equation 30 with
x1 ¼ rg, x2 ¼ r0, x3 ¼ 1, u(x3) ¼ 0, x4 ¼ 0 and
u(x4) ¼ 0. However, because it is used so frequently,
it shall be explicitly dealt with here. Equation 3
yields the standard uncertainty u(y) of the measur-
and Y associated with y

u2ðyÞ ¼ w2 · ðrg/tg þ r0/t0Þ þ y2 · u2
relðwÞ ð38Þ

with urelðwÞ ¼ uðwÞ/w.
With this information, ~uuðZÞ can be explicitly cal-

culated since one expects for a true value Z of the
measurand a number of counts ng in the gross
measurement

ng ¼ Z/w þ r0 · tg: ð39Þ

Since u2(ng) ¼ ng is valid for a poisson process, one
can calculate �uuðZÞ using Equation 38 as

~uu2ðZÞ ¼ w2 · ððZ/w þ r0Þ/tg þ r0/t0Þ þ Z2 · u2
relðwÞ

ð40Þ

and obtains for Z ¼ 0 the decision threshold

y� ¼ k1�a · ~uuð0Þ ¼ k1�a · w ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 ·

1

tg

þ 1

t0

� �s
ð41Þ

and for the detection limit

Z� ¼ y� þ k1�b · ~uuðZ�Þ ¼ y� þ k1�b ·ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 · ððZ�/w þ r0Þ/tg þ r0/t0Þ þ Z�2

· u2
relðwÞ

q
ð42Þ

which can conveniently be solved by iteration with
the starting value Z� ¼ 2y�. For a ¼ b, i.e. k1–a ¼
k1–b, Equation 42 has the simple explicit solution;

Z� ¼ 2 · y� þ ðk2
1�a · wÞ/tg

1 � k2
1�a · u2

relðwÞ
: ð43Þ

General measurement of a net quantity with
calibration

The simple model of Equation 37 can also be used
to demonstrate that the approach described here is
not limited to measurements of ionising radiation.
A model in the form of Equation 44 describes an
evaluation of any measurand derived from a gross or
sample measurement and a background or blank
measurement. The value y of the measurand Y is
the difference of the gross signal xg and the blank
signal x0 multiplied by a calibration factor w with
their respective standard uncertainties u(xg), u(x0)
and u(w).

y ¼ ðxg � x0Þ · w ð44Þ

Then the standard uncertainty u(y) associated with y
is given by

u2ðyÞ ¼ w2 · ðu2ðxgÞ þ u2ðx0ÞÞ þ y2 · u2
relðwÞ ð45Þ

with urelðwÞ ¼ uðwÞ/w.
The minimum information requirement to allow

for the calculation of the decision threshold and the
detection limit is that the experiment was success-
fully performed at least one time each for the gross
and the background measurements. This means that
xg, u(xg), x0, u(x0), w and u(w) are available. In
particular, it is not needed for the following that xg

and x0 result from a Poisson process.
For Z ¼ 0, one expects xg ¼ x0 and obtains with

Equation 45 ~uuð0Þ ¼ 2 · uðx0Þ. Then, the decision
threshold is calculated by;

y� ¼ k1�a · w ·
ffiffiffi
2

p
· uðx0Þ: ð46Þ

If no further information on the measurement pro-
cedure and on ~uuðZÞ is given, the detection limit can
only be calculated using the interpolation formula
(Equation 18) and obtains an explicit formula for
the detection limit (Equations 19 and 20). Note,
however, that the explicit formula for the detection
limit is only an approximation, which works best
if y �� 2y�.

A special case of the model of Equation 44 is
that of ratemeter measurements where a net count
rate value (rg – r0) as the difference of a gross count
rate value rg and a background count rate value r0

multiplied by a calibration factor w is used, but
where the standard uncertainties cannot be calcu-
lated as u(xg) ¼ xg/tg and u(x0) ¼ x0/t0.
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Ratemeter measurments

A ratemeter is understood, here, as an analo-
gue/digital working count rate measuring instrument
where the output signal increases sharply (with a
negligible rise time constant) upon the arrival of an
input pulse and then decreases exponentially with a
relaxation time constant t until the next input pulse
arrives. The signal increase must be the same for all
pulses and the relaxation time constant must be
independent of the count rate. A digitally working
count rate measuring instrument simulating the one
just described is also taken as a ratemeter that has to
be considered here.

Each particular measurement using a ratemeter
must be carried out in the stationary state of the
ratemeter. This requires at least a sufficiently fixed
time span between the start of measurement and
reading the ratemeter indication. This applies to
each sample and to each background effect measure-
ment. According to Ref. (33), fixed time spans of
3t or 7t correspond to deviations of the indication
by 5% or 0.1% of the magnitude of the difference
between the indication at the start of measurement
and that at the end of the time span. If further
uncertain influences have to be taken into account,
then a time span of, at least, 7t should be chosen,
if possible.

The expectation values rg and r0 of the output
signals of the ratemeter in the cases of measuring the
gross and background effects, respectively, are taken
as the input quantities X1 and X2 for the calculation
of the characteristic limits; X1 ¼ rg and X2 ¼ r0.
With the values rg and r0 of the output signals deter-
mined at the respective moments of measurement,
the following approaches result for the values of
the input quantities and the associated standard
uncertainties:

y ¼ ðxg � x0Þ · w ð47Þ

with

x1 ¼ rg; x2 ¼ r0; u2ðx1Þ ¼
rg

2tg
; u2ðx2Þ ¼

r0

2t0
: ð48Þ

In Equation 48, approximations with a maximum
relative deviation of 5% for rgtg � 0.65 and of 1%
for rgtg � 1.32 are specified according to Ref. (33).
The same applies to r0t0. The relaxation time con-
stants tg and t0 have to be adjusted accordingly.

The ratemeter measurement is equivalent to a
counting measurement with time pre-selection as
given (Equation 37) and with the measurement
durations tg ¼ 2tg and t0 ¼ 2t0. The quotients ng/tg

and n0/t0 of the counting measurement have to be
replaced here by the measured count rate values rg

and r0, respectively, of the ratemeter measurement.
This applies, in particular, to Equation 39. The stan-
dard uncertainties of the relaxation time constants

do not appear in the equations and are, therefore,
not needed.

For the model specified in the form of Equation 47,
Equation 48 leads to

u2ðyÞ ¼ w2 ·
rg

2tg

þ r0

2t0

� �
þ ðrg�r0Þ2 · u2ðwÞ: ð49Þ

Replacing y by Z and eliminating rg ¼ Z/w þ r0 yields

~uu2ðZÞ¼w2 ·
Z

2tg · w
þr0 ·

1

2tg

þ 1

2t0

� �	 

þZ2 · u2

relðwÞ

ð50Þ

and one obtains the decision threshold

y� ¼ k1�a · w ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 ·

1

2tg
þ 1

2t0

� �s
ð51Þ

and the detection limit

Z� ¼ y� þ k1�b ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 ·

Z�

2tg · w
þ r0 ·

1

2tg
þ 1

2t0

� �	 

þZ�2 · u2

relðwÞ

vuuut
ð52Þ

Spectrometric measurements

This procedure can also be applied to counting spec-
trometric measurements when a particular line in a
measured multi-channel spectrum has to be con-
sidered and no adjustment calculations, for instance
an unfolding, have to be carried out. The net inten-
sity of the line is first determined by separating
the background. Then, if another measurand, for
instance an activity, has to be calculated, one has
to proceed as described for the models according to
Equation 29, in particular, to calculate ũ(Z) accord-
ing to Equation 34.

Independent Poisson-distributed random variables
Ni (i ¼ 1, . . . , m as well as i ¼ g) are assigned to
selected channels of a measured multi-channel
spectrum—if necessary, the channels of a channel
region of the spectrum can be combined to form a
single channel—with the contents ni of the channels
(or channel regions), and the expectation values of
the Ni are taken as input quantities Xi. In the follow-
ing, Wi is the lower and Wi

0 is the upper limit of chan-
nel i; W is, for instance, the energy or time or another
continuous scaling variable assigned to the channel
number. The channel widths ti ¼ Wi

0 � Wi correspond
to t. Thus, Xi ¼ riti with the mean spectral density ri

in channel i and xi ¼ ni is an estimate of Xi with the
squared standard uncertainty u2(xi) ¼ ni associated
with xi. For i ¼ g, the quantities ng and Xg ¼ rg · tg

represent the combined channels of a line of interest
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in the spectrum. The measurand Y with the true
value Z is the net intensity of the line, i.e. the expecta-
tion of the net content of channel i ¼ g (region B,
Figure 5).

At first, the background of the line of interest must
be determined, which also includes the contributions
of the tails of disturbing lines. A suitable function
H(W, a1,. . .,am), representing the spectral density of
the line background with the parameters ak, is intro-
duced so that

ni ¼
Z W0i

Wi

HðW; al , . . . , amÞdW; ði ¼ l, . . . , mÞ ð53Þ

from which the ak have to be calculated as functions
of the ni. The background contribution to the line is
then

z0 ¼
Z W0g

Wg

HðW; al , . . . , amÞdW: ð54Þ

The random variable Z0, associated with the back-
ground contribution z0, implicitly is a function of the
input quantities Xi because z0 is calculated from the
xi ¼ ni. The model approach for the measurand Y
reads

y ¼ GðXg, Xl , . . . , XmÞ ¼ Xg �Z0 ð55Þ

from which

y ¼ ng � z0; u2ðyÞ ¼ ng þ u2ðz0Þ;

u2ðz0Þ ¼
Xm

i¼1

Xm

k¼1

@z0

@ak

@ak

@ni

 !2

ni ð56Þ

follow. The bracketed sum equals @z0/@ni. For the
calculation of the function ~uuðZÞ, the net content Z of
channel g is first specified. Then, y in Equation 56

is replaced by Z. This allows ng to be eliminated,
which is not available if Z is specified. This results
in ng ¼ Z þ z0 and

~uu2ðZÞ ¼ Zþ z0 þ u2ðz0Þ: ð57Þ

The characteristic limits according to Section 6 then
follow from Equations 56 and 57.

If the approach

HðWÞ ¼
Xm

k¼1

ak · ckðWÞ: ð58Þ

linear in the ak is applied with given functions ck(W),
then Equation 53 represents a system of linear equa-
tions for the ak. Thus, the ak depend linearly on the ni

and the partial derivatives in Equation 56 do not
depend on the ni. Then,

u2ðz0Þ ¼
Xm

i¼1

b2
i · ni ð59Þ

with quantities bi not depending on the ni. Equation
59 also follows when the background contribution z0

to the line is calculated linearly from the channel
contents ni with suitably specified coefficients bi:

z0 ¼
Xm

i¼1

bi · ni: ð60Þ

Depending on the background shapes, the approach
given in Equations 56–60 has different applications.
If events of a single line with a known location in the
spectrum are to be detected, then the following cases
of the background shape as a function of W and the
associated approaches have to be distinguished;

(a) Constant background: approach H(W) ¼ a1

(constant, m ¼ 1)
(b) Linear background, which can often be assumed

with gamma radiation: approach H(W) ¼ a1 þ a2W
(straight line, m ¼ 2)

(c) Weakly curved background with disturbing
neighbouring lines: approach H(W) ¼ a1 þ a2W þ
a3W

2 þ a4W
3 (cubic parabola, m ¼ 4)

(d) Strongly curved background, which can be
present with strongly overlapping lines, for
instance, with alpha radiation: approach accord-
ing to Equation 58.

In cases (a), (b) and (c), the scaling variable W
is required to be linearly assigned to the channel
number.

In cases (a) and (b), it is suitable for the back-
ground determination to introduce three adjacent
channel regions A1, B and A2 in the following way.

Region B comprises all the channels belonging to
the line and has the total content ng and the width tg.

Figure 5. Section of a multi-channel spectrum, recorded
using a NaI detector, with the background shapes

calculated according to cases (b) and (c).
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If the line shape can be assumed as a gaussian curve
with the full width h at half maximum, then region B
has to be placed as symmetrically as possible over
the line. The following should be chosen;

tg � 2; 5h ð61Þ

if fluctuations of the channel assignment cannot
be excluded or the background does not dominate,
for instance, with pronounced lines. In case of a
dominant background, the most favourable width

tg � 1; 2h ð62Þ

has to be specified for region B. This region
then covers approximately the portion f ¼ 0.84

of the line area. In general, f ¼ 2 · Fðv
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
Þ �1,

if tg ¼ v · h with a chosen factor v.
In principle, the full width h at half maximum

has to be determined from the resolution of the
measuring system or under the same measurement
conditions by means of a reference sample emitting
the line to be investigated strongly enough, or from
neighbouring lines with comparable shapes and
widths. Region B must comprise an integer number
of channels, so that tg has to be rounded up
accordingly.

Regions A1 and A2, bordering region B below and
above, have to be specified with the same widths
t ¼ t1 ¼ t2 in case (b) only. The total width t0 ¼
t1 þ t2 ¼ 2t has to be chosen as large as possible
but at most so large that the background shape over
all regions can still be taken as approximately con-
stant [case (a)] or linear [case(b)]. n1 and n2 are the
total contents of all channels of regions A1 and A2,
respectively. Moreover, n0 ¼ n1 þ n2.

Hence follows for cases (a) and (b):

z0 ¼ c0 · n0; u2ðz0Þ ¼ c2
0 ¼ c2

0 · n0; c0 ¼ tg/t0: ð63Þ

~uu2ðZÞ follows from Equation 57.
Instead, in case (c), five adjacent channel regions

A1, A2, B, A3 and A4 have to be introduced in the
way described above with the same widths t of the
regions Ai (Figure 5). With the sum n0 ¼ n1 þ n2 þ
n3 þ n4, i.e. the total content of all channels of
regions Ai, with their total width t0 ¼ 4t and with
the auxiliary quantity n00 ¼ n1 � n2 � n3 þ n4, the
following is then valid:

z0 ¼ c0 · n0 � c1 · n00;

u2ðz0Þ ¼ ðc2
0 þ c2

1Þ · n0�2c0 · c1 · n00;

c0 ¼ tg/t0;

c1 ¼ c0 · ð4/3 þ 4c0 þ 8c2
0/3Þ/ð1 þ 2c0Þ ð64Þ

and ~uu2ðZÞ follows from Equation 57. Two numerical
examples of case (c) are treated in Refs (23) and (24).

In case (d), m adjacent regions Ai have to be
introduced in the same way, with approximately
half of them arranged below and above region B.
The regions Ai need not have the same widths. The
power functions Wk�1 have to be chosen to some
extent as above as the functions ck(W). For the
same purpose, the functional shapes of the disturb-
ing neighbouring lines that have to be considered
should also be chosen as far as possible and known.
Then, ~uu2ðZÞ again follows from Equation 57.
Detailed advice on obtaining the regions for
determining the background may be found
elsewhere(23,24).

After ~uu2ðZÞ has been calculated in all cases
according to Equation 57, the characteristic limits
result with Equations 14 and 16.

FURTHER APPLICATIONS

The procedure described here is so general that it
allows a large variety of applications to similar mea-
surements. Some important cases were treated above
in detail. Many other applications do not differ in
their models from those explicitly given here, but
merely in the interpretation of the input quantities
X1 and X2 and in setting up the corresponding esti-
mates x1 and x2 and standard uncertainties u(x1) and
u(x2).

Independent of the application, the main task con-
sists of determining the primary measurement result
y of the measurand and the associated standard
uncertainty u(y) as well as the standard uncertainty
~uuðZÞ as a function of the measurand. Subsequently,
with all applications, the decision threshold y�, the
detection limit Z�, the confidence limits Zl and Zu and
the best estimate z of the measurand with the asso-
ciated standard uncertainty u(z) can be calculated
according to Equations 14, 16, 21–23.

Numerical examples are given in Refs (18, 23, 24,
35, 36). Further applications of the approach pre-
sented in this paper are described elsewhere:


 Albedo dosemeters(9);

 Counting measurements on moving objects(11,17);

 Repeated counting measurements with random

influences(23,24);

 Counting measurements on filters during

accumulation of radioactive materials(16);

 Alpha spectrometry(23,24);

 Unfolding in spectrometric measurements(10,19,37).

CONCLUSIONS

With the GUM there exists an internationally
accepted, standardised procedure for the determina-
tion of measurement uncertainties.

With standard uncertainties according to the
GUM, characteristic limits can be calculated
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for any measurement procedure according to DIN
25482-10 and ISO 11929-7.

The procedures described in this paper and in Refs
(23, 24) provide a basis for the revision of DIN
25481 Parts 1–7 (except Part 4) and ISO 11929
Parts 1–4. With revised standards DIN 25482 and
ISO 11929, a consistent standardisation of the cal-
culation of characteristic limits will be provided,
covering an extremely wide range of models.
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(Köln: TÜV Verlag Rheinland) (1999), ISBN 3-8249-
0542-6.

37. Weise, K. and Michel, R. Erkennungsgrenze, Nach-
weisgrenze und Vertrauensbereich in der allgemeinen
Kernstrahlungs-Spektrometrie. Kerntechnik 60, 189–
196 (1995).

BAYESIAN DECISION THRESHOLD IN IONISING-RADIATION MEASUREMENT

63

http://www.eurachem.ul.pt/guides/QUAM2000-1.pdf

