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When a contribution of a particular nuclear radiation is to be
detected, for instance, a spectral line of interest for some pur-
pose of radiation protection, and quantities and their uncer-
tainties must be taken into account which, such as influence
quantities, cannot be determined by repeated measurements or
by counting nuclear radiation events, then conventional statis-
tics of event frequencies is not sufficient for defining the deci-
sion threshold, the detection limit, and the limits of a confi-
dence interval. These characteristic limits are therefore rede-
fined on the basis of Bayesian statistics for a wider applicabil-
ity and in such a way that the usual practice remains as far as
possible unaffected. The principle of maximum entropy is
applied to establish probability distributions from available
information. Quantiles of these distributions are used for
defining the characteristic limits. But such a distribution must
not be interpreted as a distribution of event frequencies such
as the Poisson distribution. It rather expresses the actual state
of incomplete knowledge of a physical quantity. The different
definitions and interpretations and their quantitative con-
sequences are presented and discussed with two examples.
The new approach provides a theoretical basis for the DIN
25482-10 standard presently in preparation for general appli-
cations of the characteristic limits.

1 Introduction

The DIN 25482 series of German standards [1-7] (and the
corresponding SO 11929-1 to -6 standards at present in pre-
paration) to be applied in radiation monitoring and protec-
tion, provides procedures to stipulate the decision threshold
(formerly called the limit of decision), the detection limit,
and the limits of a confidence interval in nuclear radiation
measurement. DIN 25482-1 [1] is the basic standard of this
series. It deals with the important basic case of detecting a
potential net radiation contribution of a sample by compar-
ing the results of counting measurements of the zero effect
and of the gross effect, the latter being the sum of the sample
and zero effects (Sect. 4). In DIN 25482-6 [6], the influence
of sample treatment is additionally taken into account. DIN
25482-3 [3] is related to ratemeter measurements, and DIN
25482-2 [2], -4 (4], and -5 [5] to counting spectrometric meas-
urements in simple cases of spectral line detection in a mutti-
channel spectrum of alpha and gamma radiation. DIN
25482-7 [7] deals with counting measurements involving
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Bayes-statistische Erkennungsgrenze, Nachweisgrenze, und
Vertrauensbereich bei Kernstrahlungsmessungen. Wenn ein
Beitrag einer bestimmten Kernstrahlung nachgewiesen werden
soll, z.B. eine fragliche Linie in einem Spekirum zum Zwecke
des Strahlenschutzes, und auch Grofien und deren Unsicher-
heiten beriicksichtigt werden miissen. die wie Einflufigrifen
nicht durch mehrmalige Messung oder durch Zidhlung von
Kernstrahlungsereignissen ermittelt werden konnen, reicht die
konventionelle Statistik von Ereignishdufigkeiten nicht aus.
um die Erkennungsgrenze, die Nachweisgrenze und die Gren-
zen eines Vertrauensbereichs festzulegen. Diese charakteristi-
schen Grenzen werden deshalb auf der Grundlage der Bayes-
schen Statistik fiir umfassendere Anwendung neu definiert,
und zwar so, dafi Auswirkungen auf die bisherige Praxis mog-
lichst gering bleiben. Das Prinzip der maximalen Entropie
wird angewendet, um aus vorliegender Information Wahr-
scheinlichkeitsverteilungen zu gewinnen, deren Quantile fiir
die Definitionen der charakteristischen Grenzen benuizt wer-
den. Eine solche Verteilung darf allerdings nicht wie die Pois-
son-Verteilung als Verteilung von Ereignishiufigkeiten aufge-
faBt werden, sondern sie driickt den aktuellen Stand der
unvollstindigen Kenntnis tiber eine physikalische Grofie aus.
An Hand zweier Beispiele werden die unterschiedlichen Defi-
nitionen und Interpretationen und deren quantitative Auswir-
kungen erldutert und diskutiert. Der neue Zugang bildet die
theoretische Grundlage fiir die z.Z. in Arbeit befindliche
Norm DIN 25482-10 fiir allgemeine Anwendungen der cha-
rakteristischen Grenzen.
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flowing media and using monitors equipped with filters for
the accumulation of radioactive materials during the meas-
urement. It is based on a theory developed in Ref. [8].

The decision threshold and the detection limit serve to
assess detection possibilities on the basis of statistical proce-
dures and given error probabilities. The decision threshold
allows to decide whether or not a ,sample™ has made a con-
tribution to registered nuclear radiation events or, expressed
in other words. whether or not a positive value of the mea-
surand, the physical quantity in question. follows from a
measurement. In counting non-spectrometric measurements
of nuclear radiation, this measurand is. for instance. an activ-
ity which is the net effect following from a gross effect meas-
urement with the sample and a reference or zero effect
measurement [1]. In a series of counting measurements on
filters during accumulation of radioactive materials. the con-
tribution of the sample. the measurand. consists in a change
of the specific activity of the medium flowing through the fil-
ter [7, 8]. In spectrometric measurements. for instance. of
alpha or gamma radiation, the .sample* may be a spectral
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line in a measured spectrum [2, 4, 5]. The detection limit is
the smallest potential contribution, that is, the smallest posi-
tive value of the measurand, which can be detected by a
measurement procedure intended to be applied. It makes it
possible to decide whether or not the measurement proce-
dure complies with present requirements and thus is suitable
for the purpose assigned to the measurement in question. To
this end, the detection limit is compared with a given siand-
ard value following from requirements to be met by a meas-
urement procedure on scientific, legal, or other grounds. The
measurement procedure will be unsuitable if the detection
limit exceeds the standard value. In contrast, a measurement
result obtained for a measurand by an evaluation of the
measurement data, for instance by a spectrum unfolding,
must be compared with the decision threshold. If a contribu-
tion of the ,sample" is detected, the confidence interval will
contain the measurand value with a given probability, the
confidence level [9, 10} (Sect. 3). The confidence interval is
enclosed by the confidence limits.

All the present standards of the DIN 25482 series are
based on conventional statistics because in most cases only
counting measurements of nuclear radiation are considered.
Accordingly, it is possible and adequate to assume Poisson
distributions of the frequencies of radiation events registered.
In DIN 25482-6 [6]. an influence quantity due to the effect of
sample treatment is taken into account and, therefore, a nega-
tive binomial distribution of the event frequency can be and
is assumed. A more complex distribution of the fluctuating
indication of a linear analog ratemeter is used in DIN
25482-3 [3] and derived in Ref. [11]. In general spectrometry,
a spectrum unfolding must often be carried out to obtain the
measurand in question, for instance, a spectrum parameter
such as the net intensity of a spectral line. This problem is
dealt with in Ref. [12] to provide a theoretical basis for a
future standard of the DIN 25482 series dealing with spec-
trum unfolding. In treating this problem. incompletely known
physical quantities must be considered which in repeated
measurements do not behave randomly - these might be. for
example. influence quantities — or for which distributions of
values encountered in measurements many times repeated
are unknown and cannot be assumed or obtained. An
approach to this problem has recently been attempted by the
author [12], applying DIN 1319-4 [14] and the Guide to the
expression of uncertainty in measurement [9] and using esti-
mates and associated uncertainties of those quantities. In this
Guide, uncertainties are evaluated either by ,.statistical meth-
ods* (type A) or by ,,other means* (type B), i.e. by methods
of either conventional statistics or Bayesian statistics. The
uncertainties are then combined regardless of their origin.
This is common practice and can be accepted as an adequate
first approximation, but is not satisfactory from the theoreti-
cal point of view. This was the incentive to establish a Bayes-
ian theory of measurement uncertainty [10] in which the type
A and type B methods are unified and identified with the
methods of Bayesian statistics. In addition, the principle of
maximum entropy is used to establish probability distribu-
tions of estimators assigned to the physical quantities. But
such a distribution must not be interpreted as that of values
which occur or are assumed to occur in repeated or counting
measurements, Instead, based on the information actually
available, it quantitatively expresses the actual state of incom-
plete knowiedge of the physical quantities involved. It is a
degree of belief in the sense of the probability !/, assigned to
each of the two sides of a coin before tossing it.

For the purpose of including information which cannot be
regarded as obtained from repeated or counting measure-
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ments, we redefine the decision threshold. the detection
limit, and the confidence limits in a general way on the basis
of Bayesian statistics (Sect. 3) using also the Bayesian theory
of measurement uncertainty [10] (Sect. S). In this paper, we
summarily call them the characteristic limits and define them
in as close agreement with the usual definitions as possible
so that no essential changes will be necessary in practice.
The new approach however has a wider applicability and is
more satisfying from the theoretical point of view. The differ-
ent definitions and interpretations and their quantitative con-
sequences are demonstrated and discussed with two exam-
ples. One of these is the important basic, but not easy to han-
dle case of counting measurements dealt with in DIN
25482-1 [1]. In Sect. 4, we apply both statistics to it. The char-
acteristic limits are also redefined to provide a theoretical
foundation for the new, basic DIN 25482-10 standard pre-
sently in preparation. This standard is intended for the gen-
eral application to a large variety of problems and proce-
dures dealing with the characteristic limits in nuclear radia-
tion measurement so that no need remains to establish an
own standard for each of those cases.

Bayesian statistics has already been used by Miller et al.
[15] to define the decision threshold (they call it the ,.critical
level*). They do not use the principle of maximum entropy
to establish probability distributions but make reasonable
assumptions on these. As the authors themselves point out,
their definition is essentially different from the conventional-
statistical definition and thus gives quite different numerical
values for the decision threshold (Sect. 3).

2 Elements of probability theory

A short overview of the needed basic elements of probability
theory is given here. For more details of the concepts and
fundamentals of probability theory and statistics, see the
standards or a textbook on these subjects, for instance. Refs.
[16-18].

Conventional statistics and Bayesian statistics [19. 20] are
both based on probability theory. but they differ in their
understanding of the probability Pr(A) of a (random) event
A which may or may not occur in an experiment carried out
under well-defined conditions (0<Pr(4)<1). The experi-
ment could, for example. simply consist in tossing a coin. In
conventional (frequency) statistics, Pr(4) is interpreted as
the relative frequency with which A will occur or is assumed
to occur if the experiment is or was many times repeated
independently under the same nominal conditions. [n Bayes-
jan (sometimes also called subjective) statistics, Pr(A)
expresses the degree of belief, based on information actually
available, that A will happen in the experiment before the
experiment is carried out or its outcome is noticed. In fact,
this is the classical meaning of probability introduced by Ber-
noulli and Laplace [21]. Pr(A) must be understood as, for
instance, the probability !/; assigned to the event A =
{,head“) before tossing a coin. We also introduce the condi-
tional probability Pr(A | B), the probability of the random
event A under the additional condition that event B has
already occurred or will occur or is assumed to occur. The
relationship

Pr(A|B) Pr(B) = Pr(B|A) Pr(A) = Pr(AB) (1)
is called the Bayes theorem. AB denotes the event A and
B“. Events A and B are independent if Pr(A|B) = Pr(A). If
A and B of AB are explicitly described by formulae, e.g. A =
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{X <1}, we seperate these by a semicolon and omit the brack-
ets: e.g. Pr(X<1; Y = 0). The expansion theorem

Pr(A) = > Pr(A|Bj) Pr(B) (2)
!

is valid if exactly one of the events B; occurs in the experi-

ment. The sum may also be an integral if Pr(B)) is propor-

tional to a differential increment dz of any integration vari-

able z replacing j as in Egs. (3) and (4) below.

When the experiment is carried out, a real random vari-
able X (or ¥) assumes one of its potential values. a real num-
ber (times an appropriate unit). Fx(x) = Pr(X<x) is the
(cumudative) distribution function of X, the variable x repre-
senting an arbitrary value. The probability of the random
event A = [X <.x] may be a conditional one: the conditional
distribution function is then denoted by Fx(x|B) with a par-
ticular event B. A distribution function is single-valued and
non-decreasing. At every abscissa x, it is either continuous.
or it has a step there and is continuous from the right. i.e.
from values larger than x. The number of steps is either finite
or countably infinite. The random variable X is discrete if it
can assume only discrete values x; with px(x;) = Pr(X=x,)>0,
in which px(x) is the probability function of X. Then,
Fx(x)=3"; px(x;) for xj<x. For example. the random variable
assigned to the number of counted nuclear events of a par-
ticular kind is discrete. X is continuous if there is a non-ne-
gative function fx(x), the probability density of X, with the
property Fx( r) JZ . fx(z) dz. Then, fx(x) dr=dFy(x)=Pr(x
- de<X<x+i 5 dx). *Either of a distribution function. a prob-
ablhty function or density is also briefly referred to as a dis-
tribution.

The expectation value EG(X) of a function G(X) of a ran-
dom variable X is defined by

EG(X) =/G(.r) dFx(x). (3)
In particular for discrete or continuous X we only deal with.

EG(X Zcx, )px(x;) or EG(X /G ) fx(x @

respectively. The non-central second-order moment E(X - xy)?
of X with respect to a particular value xo assumes for xp =
EX its minimum value Var X = E(X - EX)?2, the variance of
X. the square root of which is called the standard deviation
o(X). @x(w)=E exp(iw X) is the characteristic function of X.
The random variable X or its distribution is standardized if
EX =0and Var X = 1.

A value x, is a quantile of X for a given probability 7 if
Pr(X <x,)<nand Pr(X<x,) = Fx(x,) 2 7. The two conditions
are needed if Fx{x) has a step at the abscissa x = x,. Other-
wise, Fx{x;)=7. It can happen that Fx(x) =7 for all x of an
interval. Then we choose as x, either the Jlower or the upper
interval limit. With the latter choice. we denote the quantile
by £,. In all other cases, this quantile is identical to x,. The
particular quantile of the standardized normal distribution
fx(x) = exp(—%xz)/\/Z_n' is denoted by k, and obeys the rela-
tionship ki, = - k.

We always use a lower case letter to denote a value of a
random variable, and we denote this random variable either
by the same letter with a hat (7) or by the corresponding
upper case letter. For brevity and convenience. we then can
in many cases omit the symbol of the random variable,
briefly describe random events such as {X=x} or {x-{dx
< X £ x +1dx] by x. and use abbreviations such as
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f(x16) = px(x €= & = Pr(X = x|€ = )
. 1 1 :
fel) = felxlé = ) = pr(x - Jax < r < x e axlé=¢) [

for probability functions and densities. f acts more as an
operator than as a function: f(x) and f(y) are in general dif-
ferent functions! Therefore f is written upright. Using f. the
Bayes and expansion theorems according to Eqs (1) and (2)
read

E(x 1€ £(§) = £(€]x) f(x) = f(x;6); (6)

S LCGLGES )

Here, the integral must be replaced by a sum if ¢ is discrete.
To derive the probability density f(y) of a function
Y =G(X), X2, ..) of several continuous random variables
Xi with their joint probability density f(xi; xz; ...) and using
the Dirac delta function 0(y-z) with d(y~z) = 0 for y=zz
and [(y-z) dy = 1, the Markov formula can be applied:
f(y) = /6(y = Glxy.xg, )Y flxy: xp ) doe dg - (8)
This equation is a special case of Eq. (7) with x replaced by
¥ € by the x;, and f(x|€) by the delta function according to
the functional relationship involved. A formula similar to
Eq. (8) is valid for discrete random variables X; and Y with
the Kronecker symbol dy,; with 6,.=0 for y#z and d..=1
fory=1z:

= Z 6)‘.G(x|.xz..,.)

In this sum, every summation variable .x; is understood to
assume all the potential values x;; of the random vanable Xi,
and f(xy; x2; ...) is the joint probability function of the vari-
ables Xi. The random variables X; are independent if f(xi:
x2; ...} = f(x1) f(xz) . We call an operation according to Egs.
(8) or (9) a folding when, in particular, the random variables
X; are independent and Y= G(X), Xz, ...) =3, a:X; with con-
stant coefficients ai. Then,

f(x,;xz;...)‘ (9)

EY=Za,- EX;; VarY:Z:a,-2 VarX,;

Ingy (w) = Z Inpy, (aw). (10)
The principle of maximum entropy [22] can be used to
establish the distribution f(x|a) of a random variable X. It
consists in maximizing the (information) entropy
—/ f(x|a) In(f(x|a)/ f(x)) dx = max (an
g

observing the normalization condition and the constraints
EGi(X) = a; with given functions Gi(X) and data a; summa-
rily denoted by a. The entropy S is a measure of the prob-
ability of the distribution f(x|a) which is itself taken as a ran-
dom function. The principle of maximum entropy is ulti-
mately based on the principle of assigning uniform probabil-
ities to equally possible states of the same kind because of
symmetry considerations. The integral must be replaced by a
sum if X is discrete. G is the region of integration where the
prior f(x) of X is positive. The prior is the distribution of X
before the data a; are available. It may either be given. or set
constant in G if it is not given, expressing that every value
xe G is equally likely. It can sometimes be derived from
invariance considerations, for instance. a prior const/v for the
parameter v >0 of a Poisson distribution. taken as a random
variable [23] (Sect. 4.1). The prior may be unnormalizable.
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This property only indicates insufficient prior information to
determine the expectation value of any function of X. With
the well-known Lagrange method, the solution of the maxi-
mization problem is

f(x|a) = Ci(x)exp( - Y8, Gi(x)) (12)
with the normalization constant C and Lagrange multipliers
Bi which must be calculated from the data a and the con-
straints. f(x|a) vanishes outside G.

In statistical tests of hypotheses, statements to be proved
true or false, an error of the first kind results if a true hypoth-
esis is rejected. Similarly, an error of the second kind results
if a false hypothesis is accepted. The given probabilities of
the errors of the first and second kind are denoted by a and
B. The given confidence level of a confidence interval is
denoted by 1-v. The different meanings of the confidence
level in Bayesian and conventional statistics are described in
Sect. 3.

3 Definitions of the characteristic limits

An experiment, which may consist of a single measurement
or a series of measurements independently repeated under
the same nominal conditions. is carried out to determine the
unknown (true} value of a measurand. a physical quantity
involved (or, similarly, the values of several measurands). To
estimate the (true) measurand value from the data obtained
by the experiment or from elsewhere, a random variable & is
assigned to the measurand and called an estimaior. A partic-

ular value £ of the estimator £ is an estimate of the meas-

urand. The measurement result of the measurand is such an
estimate evaluated from the data and other given relevant
information on the measurand.

In Bayesian statistics, the distribution f(£| x; y) of the esti-
mator £ expresses the actual state of incomplete knowledge
of the measurand. the degree of belief that a particular value
& of the estimator & is the measurand value to be determined.
This distribution is uniquely established using the principle
of maximum entropy and only the data actually available
and the other given information summarily denoted by x; y
(example in Sect. 5). Known, more basic frequency distribu-
tions such as Poisson distributions of radiation events regis-
tered may also be part of the information and may already
be sufficient for establishing the distribution of the estimator
£ using the Bayes theorem so that the principle of maximum
entropy need not be applied [10, 15] (example in Sect. 4).
The expectation value E ¢ is taken and calculated as the best
estimate of the measurand value, as far as the present data
and information are considered. because the non-central sec-
ond-order moment E (£-£p)? with respect to an estimate £
assumes its minimum value for £ =E¢. The square root of
this moment serves as the measurement uncertainty u (&) (of
the measurand) associated with the estimate &. The best
estimate E£ is then taken as the measurement result of the
measurand, and the standard deviation (&) as the standard
uncertainty associated with the measurement result [9, 10, 13,
14]. Moreover, the interval E€—0(£) €< E£ + (&) contains
the estimates of the measurand which are reasonable consid-
ering the measurement uncertainty {9, 13, 14]. This interval
should not be confused with the confidence interval.

Let ¢ be the estimator of a non-negative measurand of
interest such as the activity of a sample. The measurand
value zero means that the physical effect represented by the
measurand is absent. This event, denoted by Hy = |£ =0}, will
be our hypothesis when we establish the decision threshold.

KennTectx 63 (1998) 4

For the definition of the decision threshold and the detection

limit, we also introduce the probability distribution f(x|&;y)

of a random variable X. We call X the decision variable. It
should preferably be defined such that EX =¢, at least for

Hp. Its distribution expresses the degree of belief that a par-

ticular value x of X will be obtained in the experiment to be

carried out if £ is the measurand value. y is a given datum
obtained from a reference experiment already performed. It
is also taken as a value of a random variable Y related to the
decision variable X if Hy holds true, for instance, Y = X. The
Bayes theorem f(x [ y) f(&y) = f(§]x;y) f(x;y) = (& x5 )
similar to Eq. (6) establishes a relationship between the two
distributions f(£|x;y) and f(x |, y) mentioned. In this equa-
tion, y serves as a parameter only, and f(x;y) and f(&; y) are
the distributions of the decision variable X and the estimator
€ after the reference experiment has been carried out. These
distributions are priors with respect to the experiment in
question. When f(&;x;y) follows from general information
and considerations on the experiments and the measurand,
the distributions f(x{&; y) and f(£|x;y) can be obtained from
the above stated Bayes theorem by normalization with
respect to X or &, respectively. The priors then act as normal-
ization constants. When nothing is known except that the

measurand is non-negative, priors may be set constant. A

prior for £ vanishes for £ <0. Priors may be unnormalizable

and then indicate that the information is not sufficient for
obtaining a reasonable estimate of the measurand before the
measurements are performed.

We are able now to define the decision threshold. the

detection limit, and the confidence limits (Fig. 1):

o The decision threshold x* is the quantile x;_o of the distri-
bution f(x|&y) with the hypothesis Ho. — Then, Pr(X
> x*| € = 0: y) < a. If a value x of the decision variable
X. obtained in the present or a later experiment, exceeds
the decision threshold x*, i.e. if x>x* we will decide that
the physical effect in question is present, and we will
reject our hypothesis Ho.

@ The detection limit £* is the minimum value £ if the deci-
sion threshold x* equals the quantile %5 of the distribution
f(x | y). — Then Pr(X < x*|£ = £%y) 2 B and Pr(X < x*|¢
= £*; y) < B. The measurement procedure will be unsuita-
ble for the assigned purpose of the experiment if the
detection limit £* exceeds the given standard value &
expressing the requirements to be met by the measure-
ment procedure on scientific, legal, or other grounds, i.e.
if &* > &,

e If a value x of the decision variable X, obtained in the pre-
sent or a later experiment, exceeds the decision threshold
x*, i.e. if x > x*, then the lower limit & and the upper limit
€. of a confidence interval are the quantiles €,,, and &2
of the distribution f(£| x; y). — Then, Pr(& < & < &ulxiy)
€ 1-y and Pr(é1 € € £ & | x; y) 2 1-y. The quantile &,
is used to obtain the smallest interval in any case. The con-
fidence interval defined in this way is generally not symme-
trical with respect to the measurement result E£. An alter-
native symmetrical confidence interval could be defined by
the limits £u1 = E § + A&, where A is the maximum value
so that Pr(&1<€<&u|x;y)<1-y. But a symmetrical confi-
dence interval will no longer be reasonable if & < 0 is
obtained. In this case, we should set & = 0.

The definitions of the decision threshold and the detection

limit in conventional statistics are formally similar to the

Bayesian-statistical definitions, but the probability distribution

f(x|&; y) of the decision variable X has a different meaning. It

is the distribution of the relative frequencies with which values

x will occur or are assumed to occur if the experiment is or
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f(z]€&;y) .

A

0 z —

Fig. 1. lllustration of the decision threshold x* and the detection limit
& of a non-negative measurand (net effect) with a potential value .
The figure shows the distributions {(x 1 &; v) of the decision variable X
with values x and expectation value E X = £ for £ = 0 and € = .
Given data are summarilv denoted by v. The areas a and (3 below the
distributions on the right-hand or left-hand side of the abscissa x* are
the probabilities of the errors of the first and second kind

was many times repeated independently under the same nom-
inal conditions. The distribution is also assumed or derived
from assumed or known. more basic frequency distributions
such as Poisson distributions of radiation events registered.
Parameters of these are calculated from the values x and v.
These data also yield an estimate £ of the measurand as a
value of a suitable estimator ¢ related to X and Y. The confi-
dence limits are defined similarly but as the quantiles %y and
xi_y;2 of the distribution f(x |£; y) with the estimate ¢ inserted
and X so defined that E X = ¢. Numerically, all the characteris-
tic timits turn out to be slightly different according to what sta-
tistics has been used (Sect. 4).

There is another difference which must be pointed out: In
Bayesian statistics, the confidence level 1 -y is the probabil-
ity, the degree of belief, of the confidence interval. obtained
from the present data and other information. to contain the
true measurand value. In contrast. the conventional-statisti-
cal confidence level is not a probability but must be inter-
preted as the fraction 1-v of the different confidence inter-
vals calculated in the same way from the data obtained each
time if the whole experiment was repeated many times, and
containing the true measurand value.

Miller et al. [15] (Sect. 1) define the decision threshold x*
essentially differently as the quantile £ of a distribution
f(¢] x). They derive this distribution from the Bayes theorem
according to Eq. (6) with known or assumed distributions
f(x|€) and f(€) and a constant f(x). Their decision threshold
is formally identical with our upper confidence limit if
o = lv. That is the reason why it numerically differs quite
significantly from the conventional-statistical and our deci-
sion thresholds. Furthermore, the distributions are inter-
preted as those of relative frequencies. For example. () is
the reasonably assumed distribution of the measurand values
in a population of samples. based also on information or
assumptions on samples with measurand values zero.
whereas we interpret the prior £(£) as expressing our degree
of belief assigned to the measurand value of the particular
sample in question.
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4 A basic case of radiation measurement

As a first example of deriving the characteristic limits gener-
ally defined in Sect. 3, we consider the important basic prob-
lem of nuclear radiation measurement in which the results of
two measurements of counting radiation events are com-
pared to detect a potential radiation contribution of a sam-
ple. This case is also the subject of the basic standard DIN
25482-1 [1] where it is dealt with in the usual way of conven-
tional statistics. We also deal with this case in detail using
and comparing the approaches both of Bayesian and conven-
tional statistics to show their different philosophies and con-
sequences.

4.1 Poisson and gamma distributions
in a counting measurement

Let n be the number of nuclear radiation events registered
during a counting measurement of fixed duration +. The num-
ber n of counts is assumed to be drawn from an underlying
Poisson frequency distribution of a random variable N with
an unknown parameter v > 0, the measurand value. A Pois-
son distribution can in many cases be assumed for physical
reasons because nuclear events are physically independent
and life time and dead time effects and instrumental instabil-
ities can often be neglected (except. for instance. when
short-lived radionuclides or very high count rates are in-
volved or. in multi-channel spectrum measurement. in chan-
nels at the slopes of strong spectral lines). Then we have

fn|vy=e™v"/nl: (n=0.1,..)) (13)
withEN=VarN=v

In order to establish the distribution f(v|n) for the pa-
rameter v now taken as a random variable v assigned to the
measurand of interest in Bayesian statistics. we use the Bayes
theorem f(v | n) f(n) = f(n|v) f(v) according to Eq. (6). f(n) is
a constant for a given n, and a prior f(v) is needed. This prior
is the distribution of ¥ before the measurement is performed.
Jaynes [23] obtained f(v) = const/v (v > 0) by a scaling con-
sideration as follows: Assuming a steady physical Poisson
process measured. the distribution of the count rate estima-
tor 9 = v/t does not depend on the arbitrary duration ¢ of
measurement, that is, f(g|¢) = f(p) = ¢ g(o!), where the func-
tion g(v) expresses the shape of the prior f(v). Differentia-
tion with respect to ¢ yields the differential equation
A(tg(an))ot =g(v) +vg'(v) = 0 with the solution g(v) = {(v) =
C/v (v>0; C is the integration constant). The fact that this
distribution is not normalizable is due to the neglect of
short-term and long-term influences on the measurement.
Accordingly, g(v) must be interpreted as an approximation
of a more realistic, normalizable shape of the prior f(v).
Inserting f(v) = C/v into the above stated Bayves theorem.
and normalizing yields the gamma distribution f(vin)=e
v-l/(n=1)! (v 2 0) which is set zero for v<0. With Ev=
Varv = n, the number n of counted events is the measure-
ment result, and /n is the standard uncertainty (of the meas-
urand) associated with this best estimate (Sect. 3).

The particular case n = 0 must be treated separately: EV
and Varv vanish, and f(v|n) = d(v) and a zero uncertainty
follow. This is not reasonable in practice since we can never
be sure that exactly v =0 if no event happens to be registered
in a measurement of finite duration. Thus. no reasonable
statement can be made on v if n=0. With any more realistic
shape of the prior f(v), we should always obtain Ev >0 and
Varv >0. In conventional statistics. NV itself is usually used as
an unbiased estimator of v, that is. E N =v. Thus. the number
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n of events counted is an estimate of v. With Var N=v also
estimated by n, the standard uncertainty /n of the measur-
and follows and also turns out to be unreasonable for n=0.
To avoid this shortcoming which would lead into severe
troubles in Sect. 4.2, we assume that the counting measure-
ment will be carried out with a duration ¢ chosen suitably
large according to the experience of former, similar measure-
ments, so that for any reasonable v > 0 at least a few counts
can be expected. ¢ is therefore no longer arbitrary. This will
reduce the probability density for small v significantly. More-
over, v (= ot) will be bounded for physical or experimental
reasons, although a sufficiently large upper bound need not
be specified explicitly. We represent this knowledge by
equally likely v between zero and the upper bound, thus, by
a constant prior f(v). The Bayes theorem and normalization
then yield the gamma distribution
f(vin) =e "v"/nt: (v >0) (14)
with Ev = Varv = ¢%(¢¥) = n+ 1. This result is more reason-
able for n = 0 since the standard uncertainty va + 1 does not
vanish. and the interval Ev—-o{V) < v < EV + o(v) of reason-
able estimates of the measurand turns out to also contain the
estimate v = 0. Asymptotically for large n, both approaches
discussed lead to the same results. The main differences only
occur for smalil n.

4.2 The Bayesian approach

Let a reference or zero effect measurement of a dummy sam-
ple or. if appropriate. the background be carried out as an
experiment such as that considered in Sect. 4.1. In the fol-
lowing,. all symbols for quantities referring to this zero effect
measurement are primed. Thus. for instance. #’ is the number
of events registered during the zero effect measurement. It
corresponds to v in Sect. 3. We now ask for the number n of
events which will be counted in a second measurement of
fixed duration 1 to be performed with a sample involved but
otherwise with all nominal conditions identical. We assume
the count rate of this gross effect measurement to be the sum
of the count rate due to the zero effect and the count rate
contribution of the sample, i.e. v/t=V/f+p. Here, o is the
estimator assigned to the sample count rate to be measured
and corresponds to & in Sect. 3. The sample count rate is the
measurand in question.

We need the distribution f(n |g; n’) to establish the deci-
sion threshold with ¢ = 0 and the detection limit with a gen-
eral o > 0. We have

- .
f(njg:n’) = / f(n|V;ein){(V' | o:n')dV (15)
0

according to the expansion theorem in Eq. (7). If the pa-
rameter variables ¥ and o are fixed, then N and N’ are inde-
pendent, and N has a Poisson distribution with the parameter
v = or+ v't/¢. This distribution is the first factor of the inte-
grand in Eq. (15). The second factor is a gamma distribution
according to Eq. (14) since the zero effect measurement does
not depend on the sample, that is, on g. We obtain

f(no;n’)

- / i (“P( — (ot + VIO (ot +Ve/EY 1) - (e (V)7 /1) Qv
0
e ¥ n n k ek oo ek - )

= A & (k)(ef) (t/7) /o ) e~V/9dy

e e

n't k' (n — k) (16)
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with p=¢/(1+¢) and g=r/(t+¢) and with the expectation
value EN = ot + (n'+1)p/q and the variance VarN =gt
+ (n'+1)p/q?. We introduce R = N/t — (n'+1)/t' as the deci-
sion variable corresponding to X in Sect. 3. Then we obtain
E R = p as is suitable, and Var R = g/t + ((n'+1)/¢)(Lt+ /7).

It must again be pointed out that the distribution accord-
ing to Eq. (16) expresses the degree of belief assigned to the
outcome n of the gross effect measurement before this is per-
formed, and by no means a distribution of counts n occurring
in measurements repeated many times with the same sample
involved. For p = 0, it is a negative binomial distribution
(n+n)!

n +1
it q

with EN = (n'+1)p/q and VarN=(n'+1)p/q* and ER=0.
According to Sect. 2 and the negative binomial distribution
of Eq. (17), the quantile ni of N for the probability 1-a is
the smallest natural number n which meets the condition

qn’+1 n (k+n')!pk

n k!

(an

f(n]p=0:n) =

Pr(N<n|p=0in) = >1-a. (18)

The decision threshold r* of the decision variable R = N/t

— (n'+1)/t’ then follows immediately:
r=n_./t- (0 +1)/L. (19)
The measured value r = n/t — (n'+1)/t’ of the decision vari-
able R must be compared with r* to decide whether or not
the sample has contributed to the events registered. r corre-
sponds to x in Sect. 3. If r > r*, the hypothesis Ho = (g = 0] is
rejected. Results for r* are shown in Fig. 2. r* is fluctuating
due to the discreteness of njq.

The detection limit follows from Eq.
o = o* of the equation (Fig. 1)

(16) as the solution

Pr(N < ny_q|g;n')

g e e S (n+n - k)
R DD WL

n=0 k=0

o1/p) = B. (20)

Solving this equation for the g of the exponential factor e
yields an equation of the form g=A(p) which should be
solved numerically by iteration, beginning, for instance. with

=(1+ki_p/ki-a) r*. This iteration converges. Results are
shown in Fig. 3.

The distribution f(g|n; n') is needed to calculate the confi-
dence limits. It foliows from the Bayes theorem f(g | n; n') f(n:
n') = f(n | g; n') f(o| n") £(n’). In this equation, f(n]g; n) is
given according to Eq. (16) and f(n; n’) and f(n’) are con-
stants for n and n’ fixed. p characterizes the sample, g¢ is
assigned to the parameter of the Poisson distribution of the
sample events registered. § is therefore independent of N’
which belongs to the zero effect measurement. Thus, {(¢| 7')
= f(p) = const according to Sect. 4.1. We obtain

— |
- CHle ,e—wz"“ X aurp) 21)

flo|n;n')

H(p) is the Heaviside unit step function with H(g) = 0 for
o< 0 and H(g) = 1 for ¢ >0. It is used to make the distribu-
tion vanish for p < 0. The moments are

22)

Eé(,,____qi(n+n’—k)!(k+m)!l

L Kl{n - k)IpE

The normalization constant C follows from the relationship
E " =1 for m = 0. E § is the best estimate of the measurand,
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Fig. 2. (1. crosses) Exact and (2) approximate Bayesian-statistical and
(3) approximate conventional-statistical decision thresholds r* for the
detection of the radiation event rate of a sample. versus the registered
number n’ of zero effect events according 1o Eqs. (19), (25) and (31),
respectively. [dentical durations t = t of the gross and Zero effect
measurements and an error probability a = 0.05 are assumed.
ry = (ki_o/1)V2 ' is the asympiotic decision threshold for large n' and
both staiistics

the sample count rate. and o(9) is the standard uncertainty
associated with this estimate. The measured value r = n/t -
(n’+1)/t’ of the decision variable R is also an estimate of the
measurand, but it may be negative, whereas E¢ is always
non-negative. Using the Jaynes prior f(g) = const/p (Sect.
4.1) instead of the constant prior would lead to an unnorma-
lizable f(g| n; n') and. thus, to the unacceptable result that no
reasonable statement can be made on the sample count rate.

The confidence limits o) and gy are obtained by equating
the distribution integrals from ¢ = 0 up to these limits with
n=4vandn=1-1iy

¢ .
Pr(o < o|m:n) = / f(¢| nin')do’
o k

=1-Ce™¥
(n—k)ip* 4

n ’ k j
(n+n—k)!Z(g;_:)/=” 23)

k=0

with ¢ > 0. This distribution function can be verified by com-
paring its derivative with the probability density according to
Eq. (21) and by the fact that the second term vanishes for
¢ — 0. Eq. (23) can be solved numerically by iteration for
the confidence limits in a similar way as Eq. (20), beginning,
for instance, with g, = r. See Fig. 4 for results.

In the Appendix, the distributions according to Egs. (13),
(14), (16) and (17) are proved to converge (in distribution),
when standardized, to the standardized normal distribution if
a suitable parameter 7, actually the respective parameters v,
n, n', n" of the distributions mentioned. approaches infinity.
The normal distribution with the same expectation value u
and standard deviation ¢ as those of any of these distribu-
tions can then serve as an approximation of this distribution
in question for large parameter values. and. as it is also
shown in the Appendix, a quantile x, of this distribution can
be approximated by
X, =u+kyo. (24)
We are able now to establish approximations of the decision
threshold and the detection limit. Because u =E R=p and
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Fig. 3. (1, crosses) Exact and (2) approximate Bavesian-statistical and
(3) approximate conventional-staiistical detection limits o' for the
detection of the radiation event rate of a sample, versus the regisiered
number n' of zero effect events according to Eqs. (20), (26) and (32).
respectively. Identical durations t = ¢ of the gross and Zzero effect
measurements and_error probabilities a = 8 = 0.05 are assumed.
05 = (2ki_o/)V2 1 is the asympiotic detection limit for large n' and
both statistics. (4) approximation according to Ref. [1]

o =Var R=p/t + ((n'+1)/0)(Vi+ 1Y) (see passage below Eq.
(16)) and using Eq. (24), 0 = 0, and = 1 -a. the approximate
decision threshold reads (Fig. 2)

, =kl_am’+l)/ﬂ)(1/l+l/('). (25)
Except of n'+1 instead of n’, this decision threshold is identi-
cal to the approximation for large n" given in Ref. [1] of lhg
conventional-statistical decision threshold. The detection limit
is easily obtained with g = p* >0 and =8 (Figs. | and 3):

Q'=r'+k\—ﬂ\/9'/1+(("'+1)/’l)(1/r+1/[’)' (26)

This implicit equation can be solved analytically for p* or
again by iteration. In particular for a=g, we obtain
0" =2 + KA/t

Similarly, the distribution according to Eq. (21) can be
approximated by a normal distribution with g = (n+ 1)1 - (n'
+ 1Y and 0% = (n + 1)/12 + (n' + 1)Yt'2, but truncated at ¢ = 0.
if both parameters n — oo and n’ — oo (Appendix). None-
theless, a quantile g, of the truncated normal distribution
which approximates that of the distribution considered. can
be expressed by those of the standardized normal distribu-
tion which has the distribution function ®(z). With the prob-
ability g = ®(u/0), we obtain

Gy =p+kzo; F=nn+1-—ng. @n

This can be seen as follows: It is Pr(o > 0) =79 for the
untruncated normal distribution with the parameters x and
0. Thus, for abscissae g > 0, the truncated normal distribu-
tion is larger than the untruncated one by a factor 1/mg, and
Pr(0 < § < g,) =7 of the truncated normal distribution corre-
sponds to Pr (0 < § < g,)=non of the untruncated normal
distribution. Here, Pr(4 < 0) = 1- 1o must be added to obtain
Pr (§<g,)=7 of the untruncated normal distribution. It is
stressed that the parameters 4 and ¢? are not the expectation
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Fig. 4. (1, crosses) Exact and (2) approximate Bavesian-siatistical and
(3) approximate conventional-statistical lower and upper confidence
limits gy and ou for the detection of the radiation event rate of a sam-
ple. versus the registered number n' of zero effect events according to
Egs. (23) and (29) and the end of Sect. 4.3, respectively. Identical dura-
tions t = ' of the gross and zero effect measurements, n = 2n’ registered
events of the gross effect measurement, and a confidence level 1 — v =
0.95 are assumed. E ¢ and r are the Bayesian-statistical and conven-
tional-statistical measurement results, respectively, r = n'/t in this case,
Eg according 10 Eq. (28). Both the Bayesian-statistical and the approx-
imate conventional-siatistical decision thresholds correspond to n’ = 9
(vertical bar). For n' < 9 corresponding to n < 18, the hypothesis of a
zero radiation event rate of the sample cannot be rejected

value and variance of the truncated normal distribution.
Instead. the latter are

oexp(—u/(25%))
Uom

The confidence limits g; and g, follow from Eq. (27) for
n=4%v and n=1-15. For u>> o, the truncation of the dis-
tribution can be neglected. In this case, the confidence limits
are identical to those.obtained from the normal distribution

(Fig. 4):

Edo=p+ i Varpg=0-Ep (Ep—p). (28)

n+1 n+1

n+1
T'FT.

14 4 (29)

tkioyp2-

4.3 The conventional approach

With the Bayesian approach, the parameter v' of the Poisson
distribution is left unknown and taken into account as a ran-
dom variable with a constant prior distribution. In contrast,
v/ is an unknown constant in conventional statistics and esti-
mated as follows:

The random variables N and N’ are again assumed to be
Poisson-distributed with the expectation values EN=v (=
v't/t’ for the hypothesis ¢ = 0, where g is also a constant now)
and E V' = V' and variances Var N = v and Var N' = v'. The
usual conventional-statistical estimate n’ could be used for V'
(similarly, n for v). If n is available and as long as r=n/t - r
with 7 = n'/t’ does not exceed the decision threshold r*, i.e.
as long as the hypothesis ¢ = 0 cannot be rejected, n can also
be used as information for estimating v'. We then introduce
coefficients a and b and the estimator 9 =aN + bN' for v. 9
should be unbiased, i.e. E¥ = v/, and of minimum variance.
This implies E = v/ = av't/t’+ bV or ar + bt’ = 1’ and Vard =
atv'vr+ b = min or at + b#’ = min resulting ina = b =
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t'/(t+¢") and the value ¥ = (n + n')t'/(r + t') of § as the esti-
mate for v'. This is a quite natural result which we would
also obtain when putting both experiments together and esti-
mating the common count rate v/t by (n + n')/(t + t’) since
N + N also follows a Poisson distribution.

To obtain the decision threshold, we need an estimate s2
of the variance of R = N/t - N'/t’ which reads Var R = v/i2 +
ViA'2 = (V') (V/e+ U1’). Inserting the above-stated estimate 9
of v, we obtain 52 = (n + n')/t’. We again approximate the
distribution of R by a normal distribution the quantile of
which serves as the decision threshold r* = ki 5. We reject
our hypothesis g = 0 if r > r*. The largest value of r = n/t - ¥
which can be accepted as conforming to our hypothesis, is r*
implying the largest value n = r* + n'tt’ = (r* + r)t which
we insert now into the expression for s2. This finally yields

r=kig/r 0+ (114 1/7). (30)

This implicit equation can be analytically solved for r*,

resulting in
_k

ST (1+Vie@emdt e im)

(31

This is the equation presented in Ref [1] to specify the deci-
sion threshold. The results for 7* according to Eq. (31) are a
bit larger than those from Eq. (25) (Fig. 2). Eq. (31) is an
approximation, based on a normal distribution used for R,
but it is sufficient for practice. To obtain a more accurate
result would require a complex calculation including a fold-
ing of the two Poisson distributions involved with the
unknown parameter r*, yieiding the distribution of R. r* then
must be implicitly determined by comparing it with the quan-
tile of the distribution also depending on r* We dispense
with this calculation.

The detection limit is established according to Fig. 1 and
similar to Eq. (26) with r* = ki, s but with n/f in the expres-
sion of s2 estimated by g¢* + » since n is not available now.
This yields the implicit formula

o' =kiaVo /U w7 (It + 1/ +ki_g/o fe+7r - (1)1 +1/1) (32)

which should be iteratively solved for p* beginning with
¢°=0. In contrast to Ref. [1], ¥ is here not replaced by the
unknown v/t (= go in Ref. [1]) since a numerical estimate of
the detection limit is required in practice but cannot other-
wise be calculated (Fig. 3).

If r > r*, the hypothesis p = 0 is rejected, and V' cannot be
estimated as described above. In this case, R is used as
an estimator of the measurand, and r as an estimate of p.
The distribution of R is again approximated by a normal
distribution with the expectation value p estimated by r,
and a variance estimated by n/t2+n’/t'2 The quantiles
rxky_,p\/nftt+n'/t7 of this normal distribution for
n=4v and =1 -1y are then taken as the confidence lim-
its turning out to be asvmptotically identical for large n and
n’' to the Bayesian-statistical approximations according to
Eq. (29). A negative g, cannot always be avoided with the
conventional approach, whereas the Bayesian-statistical g is
always non-negative (Fig. 4).

5 Example of general application
We now investigate a simple, but basic and typical example
which generally cannot be dealt with in the framework of

conventional statistics since underlying frequency distribu-

221



K. Weise: Bayesian decision threshold in nuclear radiation measurement

tions either do not exist or are unknown and cannot be
assumed. Likewise, we again deal with the problem investi-
gated in Sect. 4, but forgetting the shape of the Poisson fre-
quency distribution involved and only taking into account
that its expectation value and its variance are identical.

Let a primary estimate x and the associated standard
uncertainty u(x) of a non-negative measurand be given or
obtained from a measurement data evaluation procedure
according to the Guide [9] or DIN 1319-3.{13] or -4 [14], for
instance, a spectrum unfolding [12], and let no further infor-
mation on the measurand be available at all. The primary
estimate x may be negative even if the measurand is known
to be non-negative. The symbol u(x) in general should not
and cannot be interpreted as a function of x, although x and
u(x) are in most cases obtained from the same data set which
also includes the zero effect measurement data y. Neverthe-
less. we need u(x) also for a general x not actually available
and different measurand values £ Therefore. we cautiously
use u(x) also as a given function of £ and then denote it by
i (£). This function will also depend on y. According to Ref.
{10}, x s the expectation value and w?(x) the variance of a
random variable ¢ called the estimator of the measurand.
Similar to Sect. 3, the measurand is assumed to be suitably
defined so that € = 0 indicates the absence of the physical
effect represented by the measurand. The primary distribu-
tion fy(£| x; y) of the estimator. the data prior [10], is estab-
lished using the principle of maximum entropy yielding the
normal probability density
fo(é|x:y) = Cexp(—%({—x)z/uz(.r)) (33)
The principle of maximum entropy (Sect. 2) here consists in
maximizing the entropy

- [ otelxy) tn(to(e ) /0(6)) de (34)
usmg a constant prior fo(§) and observing the constraints E¢

x and Var £ = u¥(x) [10].

It is known that the measurand is non-negative. This inde-
pendent information not yet used is taken into account by a
factor H(E), the model prior [10], in this particular case the
Heaviside unit step function (Sect. 4.2), yielding the final dis-
tribution f(£| x: y) as a truncated normal distribution:
f(€lxy) = CH(E) exp(—é({-’ - .r)z/uz(x)>. (35)
First the normalization constant C and then the confidence
limits are calculated similar to Eq. (27) as quantiles of this
distribution. The expectation value E 5 and the variance
Var ¢ are calculated similar to Eq. (28). The factor A(£) can
be neglected if x > u(x). We then obtain the confidence lim-
1ts
Gur = x £ ki ulx). (36)
In general, E € and Var € of f(¢| x: y) differ from x and u?(x).
This reflects the fact that the knowledge of the measurand to
be non-negative is included in f(£] x; y) but not in fo(£] x: y).
E £ and the confidence limits are always non-negative.

With the Bayes theorem f(x | &; y) (& y) = f(&] xi y) f(x: y)
according to Eq. (6), using constant f(x;y) and f(&y) for
£ >0 and approximating u(x) by the function &(£) assumed
to be varying slowly enough for £ = x, we obtain

feliy) = Cexp( 3~ 9/9)); (201 67
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Here, x is interpreted as a value of the decision variable X,
thus, E X = £ and Var X = ?(€). It is pointed out that this
normal distribution of X based on Bayesian statistics is
denived using the principle of maximum entropy and the
Bayes theorem. It is not an assumption as often in conven-
tional statistics. But it must be properly interpreted as repre-
senting the degree of belief, based on present information,
that a value x will occur in an experiment to be carried out
later on. It is not the real, approximated, or assumed distri-
bution of values x which will actually occur in experiments
repeated many times.

The decision threshold is easily obtained using f(x|&; y)
according to Eq. (37) with £ = 0:
X = ky_q 0(0). (38)

The detection limit also follows from f(x |&; v) according
to Eq. (37) (Fig. 1):
& =x"+kpal). (39)
an equation which should then be soltved iteratively for &
beginning with £* = 0. With an i1(§) varying slowly enough.
the iteration can be expected to converge. Here. it becomes
clear that the uncertainty must be given as a function of &.
Otherwise. the given value u(x) must be used as an approxi-
mation. Then. x* = k1, u(x) and & = (ki + ki5) u(x). In
many cases of Hy, x = v| - yo will be a small difference of two
values yy and vp similar to y, obtained from two measure-
ments to be compared. If the standard uncertainties u(y1)
and u(yo) associated with y; and yn are available, u¥(0) =
uz(yl) + ul(yo) may be used. Moreover. the interpolation

@2(€) = i*(0)(1 — £/x) + u*(x)&/x will be applicable if @(0) is
avallable and x > 0.

We now apply the example dealt with to the important
basic problem of common practice in nuclear radiation meas-
urements already investigated in Sect. 4. We deal with this
problem here again in the case of limited information when
data of the measurand involved are given as above only as
estimates and associated uncertainties, whereas it is dealt
with in Sect. 4 in more detail. extensively using the knowl-
edge and the properties of underlying Poisson frequency dis-
tributions of radiation events registered.

We compare two independently obtained primary esti-
mates 7 and 7 and the associated standard uncertainties u(r)
and u(r) of two measurands of the same kind in order to
detect a measurand difference known to be non-negative for
physical reasons. Let, for instance, r = n/t be the rate of n
radiation events counted during a gross effect measurement
of a sample. ¢ is the fixed duration of the measurement.
Then, if a Poisson frequency distribution can be assumed for
the random variable N the value of which is n, then w?(r) =
n/f2 according to Refs. [13, 14]. Similarly, for a zero effect
measurement, using primed symbols corresponding to the
unprimed ones, ¥ = n'/t’ = y, u¥(r’) = n/t’2>. Furthermore.
introducing the decision variable X = N/f — v with its value x
= r—r, and the net count rate & = ), our measurand as in
Sect. 4, we have u?(x) = u¥(r) + u?(r) = n/f2 + n't’? according
to the uncertainty propagation law valid also in Bayesian sta-
tistics [10]. If only the zero effect measurement is actually
carried out, we will assume r = 7 or n/t = n’/t’ with £ = 0 and
therefore w2(x) = 4%(0) = F(1/t+1/t') in this case. and we will
obtain the decision threshold asymptotically identical to that
in Eq. (25) and Ref. [1] in the case of sufficiently large n and
n’ (Sect. 4). Furthermore. for a net rate £ > 0, we approxi-
mate r = n/t ~ £+ n/t’ yielding wd(r) = (€ + n'/t'Vt and i*(€)
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= (€ + n'/t')t + n'/1? as a function of &. Accordmg to Eq. (39),
this leads to ..

& =x"+kigV/EN+r (/1 +1]r). (40)

This equation can be solved analytically for £*, or iteratively
beginning with £ = 0. The first approximation is £ = (ki +
ki) #(0). For a = B, we obtain & =2x" +k?_,/t. These
results are also asymptotically identical to those in Eq. (26)
and Ref. [1] in the case of sufficiently large n and n’ except
for the expectation value go of the zero effect count rate
occurring in Ref. [1] which here corresponds to the estimate
r'. But for large n’', gy and r’ will become approximately iden-
tical. The confidence limits must be calculated with (& x; y)
according to Eg. (35) using the above-stated x and u(x).
They are also asymptotically identical to those in Ref. [1].

\ppendix:
\symptotic behaviour of several distributions related
"o the Poisson distribution

Ve consider a random variable X with the expectation value

;¢ and the variance o2, both depending on an increasing pa-

rameter 7. and with the characteristic function ¢{w) =
E exp(iw X). The standardized random variable Y = (X-u)/o

has the characteristic function B(w) = exp(-iw /o) p(w/o),
the Taylor-expanded logarithm of which reads

InF() =~ 4 5 € = (Ingl)) gy, - w*/(310%); (06 <1). (41)

If the remainder ¢ -0 with 7—oc for any fixed w, then
Zlw) —rexp(—%u}) which is the continuous characteristic
function of the standardized normal distribution. According
to the following direct limit theorem. the distribution of Y
then converges in distribution to the standardized normal dis-
tribution,

Convergence in distribution means pointwise convergence
of a sequence of distribution functions Fy(y) of a random
variable Y to a limiting distribution function at the abscissae
where the limiting distribution function is continuous (at
other abscissae. pointwise convergence is not requ1red) It
expresses in addition that the integral /= j G(y) dFy(y) (a
Stieltjes integral similar to Eq. (3)) of any commuous func-
tion G(Y) over the interval a < y < b with constant 4 and b,
converges to the corresponding integral with respect to the
limiting distribution, here the standardized normal distribu-
tion. The limiting distribution function must be continuous at
v=a and y = b, and G(Y) must be bounded if a = -~ o0 or
b=+oc0.

The direct limit theorem is a part of the important Lévy-
Cramér limit theorem [18] and reads: If the characteristic
functions of a sequence of distribution functions converge
everywhere pointwise to a function (w) which is continuous
in an interval |w| < wp with some wyp, then the distribution
functions converge in distribution to a distribution function
the characteristic function of which is ¢(w).

The following conclusion is important for the practice of
applying the characteristic limits defined in Sect. 3: In partic-
ular with G(Y) =1 and a = - oo, we have [ = Pr(Y € b) =
Fyv(b), an increasing, continuous function of b in the case of
the standardized normal distribution, that is, / = 7 for a given
probability n if and only if b = k, . The same integral / with a
fixed b and with respect to the distribution of Y then will
converge to 7 if this distribution converges in distribution to
the standardized normal distribution and if and only if b =

Kernmecunix 63 (1998) 4

k. Thus, ky is the unique limit of the quantile y,. This is the
reason why we can use the approximation x,, = u + k,o lov
the quantile x,, if 7 is large enough.

Introducing the constants a; (i = 1,...,m) and the indepen-
dent random variables X; with their characteristic functions
wi(w), the characteristic function of Y =31 a4 X is
p(w) = H, ypilaw). If the X; are standardized and
S.m,a? =1, then Y is also standardized. If, in addition, the
remainders ¢; of X; according to Eq. (41) approach zero and
the distributions of X; thus converge in distribution to the
standardized normal distribution, then the same holds true
for Y. This can easily be seen when Iny(w) is examined.

The Poisson distribution f(n |v) = e~* v"/n! with u = 0% =
v has the characteristic function ¢(w) = exp((e-1)v) with
(Inp(w))” = - ive. According to Eq. (41), we obtain e¢=
~1i exp(ibw/ V) -«*/(3! /¥)—=0 for r =v — cc. The stan-
dardized Poisson distribution thus converges in distribution
to the standardized normal distribution.

The gamma distribution f(v|n) = e~V v"/n! with u = 0? =
(n + 1) has the characteristic function p(w) = (1-iw)"" with
(Inp(w))” ==2i (n+1) (1~iw). Accordmg to Eq. (41), we
obtain e=-i(1-ibw/Vn+1)7-P/3Vn+1)—0 for
T=n—o0. The standardized gamma dxstnbunon thus also
converges in distribution to the standardized normal distribu-
tion.

For the negative binomial distribution f(n|n’) = (n + n')!
prg i (n! n'ly with p > 0,9 >0, and p + g = 1. we have u =
(n" + 1)p/q and a% = (n" + 1)p/q? . The sum of f(n|n’) over n
must yield 1 = (1-p)"-'g7+1 . We easily obtain the character-
istic function by replacing p by pz = p e™ in this sum. which
results in p(w) = (1-pz)"-1g"+ and (Inp(w))” = -i (0" + 1)
pz (1 + pz) (1-pz)3 With Eq. (41). |pz| <p < 1. and ol=(n
+ 1)p/q2 we obtain [e| < (1 +p) o/ (3! /(n + 1) p) — 0 for
7 =n’ — oc. The standardized negative binomial dlstrlbution
thus also converges in distribution to the standardized nor-
mal distribution.

The probability function of Eq. (16) is identical with the
distribution of the sum N = N, + N, of the independent ran-
dom variables N, and N, where N, is Poisson-distributed
with the parameter of, and N; follows a negative binomial
distribution according to Eq. (17) with the parameters n'. p =
/(t+t"), and ¢ = ¢'/(t + ¢'). Applying the Markov formula
according to Eq. (9) yields for N the folded distribution

’ > e_M(QI)nl (’12-{-'1)' n+1
f(nlg:n)=m;=06n.n,+n,'—nl, e P (42)

Replacing m by k& and n; by n — k and observing 0 £ kK < n,
we easily obtain the probability function of Eq. (16). Because
of the additivity of expectation values, variances, and loga-
rithms of the characteristic functions according to Eq. (10)
when independent random variables are added. we obtain
EN =gt +(n + 1)p/qg and Var N = ot + (n’ + 1)p/q% and the
standardized distribution of N also converges in distribution
to the standardized normal distribution if ¢ — oo and
n’ — oc.

The probability density according to Eq. (21) can also be
derived by folding two gamma distributions of independent
random variables ¥ and ' whereby ¢ = v/t — V' /¢’ > 0. If, for
the moment, the Heaviside factor H(p) is omitted in Eq.
(21), then, according to the first, general part of this Appen-
dix, the distribution of §, standardized with its expectation
value g4 = (n + 1)/t - (W'+1)/t' and variance o? = (n + 1)/2 +
(n' + 1)/1’2, converges in distribution to the standardized nor-
mal distribution if n — oo and n’ — co. The factor H(p) then
truncates that standardized distribution at the abscissa —u/o
corresponding to ¢ = 0. The remaining distribution is not nor-
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mal and not standardized exeept if ulo — co. But pfo>> 1
will not always befound. . ’

Conclusion

The decision threshold, the detection limit, and the confi-
dence limits have been defined on the basis of Bayesian sta-
tistics as close as possible to the corresponding conventional-
statistical characteristic limits. They can also be used in cases
often occurring in practice, in which not only repeated or
counting measurements are involved and, thus, conventional
statistics fails. At least in the important basic case of count-
ing measurements where a potential contribution of a partic-
ular nuclear radiation in question is to be detected and both
statistics are applicable, the numerical differences between
the differently defined characteristic limits turn out to be
small and to even vanish asymptotically. There is thus no
need to change the usual practice of applying the characteris-
tic limits specified in DIN 25482-1 [1] in the case of a fixed
duration of measurement.
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