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Abstract: The quantification of measurement uncertainties and of characteristic limits, such 

as the decision threshold, detection limit, and limits of a confidence or coverage interval, is an 

essential task in metrology. The ISO Guide to the Expression of Uncertainty in Measurement 

(GUM), its recent Supplement1: “Propagation of distributions using a Monte Carlo method”, 

and the standard ISO 11929 “Determination of the detection limit and decision threshold for 

ionizing radiation measurements” provide an internationally standardized methodology for 

this task. Based on Bayesian statistics and a Bayesian theory of measurement uncertainty, 

characteristic limits can be calculated taking into account all sources of uncertainty. This ap-

proach consists of the complete evaluation of a measurement according to the GUM and the 

succeeding determination of the characteristic limits by using the standard uncertainty ob-

tained from the evaluation. This procedure is described here for several particular models of 

evaluation. It is, however, generally applicable to a large variety of measurement tasks. It is 

proposed for the revision of those parts of ISO 11929 which are still based on conventional 

statistics and, therefore, do not allow to take completely into account all the components of 

measurement uncertainty in the calculation of the characteristic limits. The approach used in 

ISO 11929-7 and in the revised ISO/FDIS 11929 is consistently applicable to the extension of 

the GUM Supplement 1, which makes use of Monte Carlo techniques to quantify measure-

ment uncertainties. 

 

1     Introduction 

 

Measurement uncertainties and characteristic limits, i.e. the decision threshold, the detection 

limit and the limits of the confidence or coverage interval, are essential ingredients of quality 

control in all fields of environmental monitoring and assessment. A result of a measurement 

without a statement about its associated uncertainty is worthless since it does not to allow 

quantifying potential environmental hazards or to demonstrate compliance of practices with 
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legal requirements. More basically, any scientific statement has to be made with incomplete 

knowledge and, therefore, its uncertainty must be assessed. 

 

Due to the fact that measurement uncertainties and characteristic limits are increasingly re-

ferred to in legislation and legal regulations, internationally standardized procedures are need-

ed to quantify measurement uncertainties and characteristic limits. To satisfy these needs with 

respect to measurement uncertainties, ISO published the ISO Guide to the Expression of Un-

certainty in Measurement (GUM) [1] in 1993 which allows a standardized quantification of 

measurement uncertainties. The ISO methodology is widely accepted and has been adopted 

also by national and international bodies; e.g. [2, 3].  

 

Characteristic limits are capable to deal with a general problem in nuclear and other analytical 

techniques as well as generally in metrology, namely that a measurand is usually to be deter-

mined in the presence of a background or a blank. From this fact three questions arise: (1) Is 

there a contribution of the sample analyzed among the signals measured?  (2) Is the analytical 

method used suited to perform the measurement task? (3) Which range of true values may be 

reasonably attributed to the measurand given the measured results? 

 

These three questions can be answered by the concept of characteristic limits. The decision 

threshold allows a decision to be made for a measurement on whether or not, for instance, 

radiation of a possibly radioactive sample is present. The detection limit allows a decision on 

whether or not the measurement procedure intended for application to the measurement meets 

the requirements to be fulfilled and is therefore appropriate for the measurement purpose. 

Finally, the limits of the confidence or – as it is now preferred - coverage interval enclose 

with a specified probability the true value of the measurand to be measured.  

 

The standard series ISO 11929 [4 - 11] provide characteristic limits for a diversity of applica-

tion fields in nuclear radiation measurements. The methodology of ISO 11929 is, moreover, 

applicable to most other metrological problems. However, as the development of the GUM 

and of characteristic limits proceeded widely independently, also ISO standards on the capa-

bility of detection exist, e.g. ISO 11843-1 [12], which are not compatible with the terminolo-

gy or methodology of the GUM [1], the recent GUM Supplement 1 [13], the VIM [14], and 

ISO 11929 [4 - 11].  
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One particular problem arises from the fact that the statistical foundation of the GUM was not 

clear at the time when it was published. It was a mixture of Bayesian and frequentist or con-

ventional statistics which have completely different understanding of the term “probability”. 

In the GUM Supplement 1 [13] it is now explicitly stated that the GUM methodology can 

only be derived from Bayesian statistics (compare chapter 3). The Bayesian foundation of the 

GUM [15 - 16] took considerable time and also developed asynchronously to the GUM [1]. 

 

The transition from conventional to Bayesian statistics also affected ISO 11929. The older 

Parts 1 to 4 of ISO 11929 [4 - 7] were based on conventional statistics, while the modern 

Parts 5 to 8 of ISO 11929 [8 - 11] are already Bayesian. Therefore, Parts 1 to 4 of ISO 11929 

need urgently a revision based on the common, already laid statistical foundation of Part 7 of 

ISO 11929 [10].  

 

This paper outlines the general foundation of the Bayesian measurement uncertainties and 

characteristic limits and gives exemplarily some applications to measurements of ionizing 

radiation. Further information on the revision of ISO 11929, which is presently underway and 

which will combine all Parts of ISO 11929 in one document, may be found elsewhere [17, 

18]. In contrast to the earlier publications [17, 18], this paper makes use of a new set of sym-

bols in accordance with a decision of Working Group 14 “Radioactivity Measurements” of 

ISO TC 85 SC 2 for the revision ISO 11929. Finally, the paper gives some information how 

to deal beyond ISO 11929 with situations where Monte Carlo methods are applied according 

to the GUM Supplement 1 [13].  

 

2   Uncertainty in Measurement 

 

The starting point of any measurement is the definition of the quantity Y to be measured and 

for which the characteristic limits are to be determined. This measurand is, for instance, the 

concentration of an element or an activity of radionuclides in a sample. The measurand is 

connected to input quantities Xi (i = 1,...,n) which originate from measurements or from other 

sources of information by a model of evaluation. Examples of input quantities are net peak 

areas from -spectra, efficiency data of a detector, sample masses, and chemical yields. The 

model of evaluation is a mathematical relationship: 

                                                 
 For the proper use of the metrological terms see ref. [14].  
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),...,,( 21 nXXXGY     (1) 

 

Note, that the model function G needs not necessarily to be explicitly available. The model 

may also be given in form of a computer code. 

 

Measurements yield estimates xi of the true values of the input quantities Xi. The estimates xi 

have standard uncertainties u(xi) associated with them. The evaluation analysis yields an esti-

mate y of the measurand Y using y as an estimate of the true value y~  of Y in equation 1 and 

one obtains  

 

),...,,( 21 nxxxGy    (2) 

 

If the input quantities Xi are not correlated, the standard uncertainty u(y) associated with y is 

calculated according to the GUM [1] as the positive square root of the variance  
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If the input quantities Xi are correlated, the standard uncertainty u(y) has to be calculated us-

ing covariances u(xi,xj); see the GUM [1] for details:        
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with ),( ii xxr  being the correlation coefficients between xi and xj . It holds )(),( 2
iii xuxxu  . 

Given m repeated measurements of the input quantities Xi and Xj with the measured values xi,k 

and xj,k (k = 1,…,m) and the respective arithmetic means kix ,  and kjx , , then the estimates 

kii xx ,  and kjj xx ,  follow and the covariances u(xi,xj) are calculated by: 
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Since, in general, the covariances can directly be calculated from the standard uncertainties 

and the correlation coefficient via ),()()(),( jijiji xxrxuxuxxu  , their determination does 

not cause calculational problems.  

 

If the partial derivatives are not explicitly available, they can be numerically sufficiently well 

approximated by using the standard uncertainty u(xi) as an increment of xi:  
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The standard uncertainties have to be evaluated according to the GUM [1]. In the GUM, un-

certainties are evaluated either by “statistical methods” (type A) or by “other means” (type B). 

Type A uncertainties can be evaluated from repeated or counting measurements, while Type 

B uncertainties cannot. They are, for instance, uncertainties given in certificates of standard 

reference materials or of calibration radiation sources which are used in the evaluation of a 

measurement.  

 

It is the distinction between the two ways (Type A and Type B), by which uncertainties are 

evaluated, which causes the problem with Bayesian and conventional statistics. Conventional 

statistics can only handle Type A uncertainties, but not Type B ones. Only by Bayesian statis-

tics, uncertainties of both types can be consistently determined. They both express quantita-

tively the actual state of incomplete knowledge about the quantities involved. 

 

Though many results of the conventional and the Bayesian approaches are numerically practi-

cally equal, they must not be confused with each other because the understanding of the term 

“probability” is completely different in both statistics. The conventional or frequentist view is 

“Probability is the stochastic limit of relative frequencies” while the Bayesian view is “Prob-

ability is a measure of the degree of belief an individual has in an uncertain proposition”. 

But, there are frequencies which do not represent probabilities and there are probabilities 

which cannot be expressed as frequencies. Bayesian statistics provides a more intuitive as-

sessment methodology than conventional statistics, closer to the scientific thinking than con-

ventional ones. For more details of these questions see e.g. [19 - 27].  
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Another complication when applying the GUM, which is not related to the type statistics 

used, arises from the fact that the GUM uncertainties are the result of a first order Taylor ex-

pansion and only applies to linear models or those which can be reasonably approximated by 

such a model – at least in the proximity of the actual data. This is frequently overlooked and 

the GUM is applied without checking first whether the model in question fulfils this require-

ment. However, the GUM Supplement 1 [13] describes a generally applicable methodology 

based on Monte Carlo techniques which resolves this issue. Methods for the determination of 

characteristic limits in this case are also available [28].   

 

3 Bayesian Statistics in Measurement 

 

As mentioned above, the basic difference between conventional and Bayesian statistics lies in 

the different use of the term probability. Considering measurements, conventional statistics 

describes only the probability distribution )~( yyf , i.e. the conditional distribution of esti-

mates y given the true value y~  of the measurand Y. However, since the true value y~  of a 

measurand is principally unknown, it is the basic task of an experiment to make statements 

about the probability of y~ . Bayesian statistics allows the calculation of the PDF )~( yyf  of 

the true value y~  of a measurand Y given the measured estimate y as well as of )~( yyf . The 

(standard) measurement uncertainty and the characteristic limits are based on both distribu-

tions )~( yyf  and )~( yyf . Characteristic limits implicitly depend on further conditions and 

information such as the model, measurement data and associated uncertainties. 

 

In order to establish the posterior PDF )~( yyf , one uses an approach which separates the in-

formation about the measurand obtained from the actual experiment (data prior or likelihood) 

from other information available about the measurand (model prior) by 

 

)~()~()~( 0 yfyyfCyyf                               (7) 

 

                                                 
 Frequently, the term probability density function (PDF) is used instead of probability distribution. This terminology is also used here in 

accordance with its use in the GUM Supplement 1 [13].    
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The likelihood )~(0 yyf  is the PDF that the measurand Y has the true value y~  if only the 

measured value y and the associated standard uncertainty u(y) are given. It only accounts for 

the measured values and neglects any other information about the measurand. The model pri-

or )~( yf  represents all the information about the measurand available before the experiment 

is performed. Therefore, it does not depend on y. C is a normalization constant.  

 

If, for instance, an activity of a radiation source or a concentration of an element is the meas-

urand, there exists the meaningful information that the measurand is non-negative )0~( y  

before the measurement is carried out. This yields for the model prior )~( yf : 
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y
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Note, that the actual result y of a measurement, for instance a net count rate, can be negative. 

But the experimentalist knows a priori without performing an experiment that the true value 

y~  is non-negative. All non-negative values of the measurand have the same a priori probabil-

ity if there is no other information about the true value of the measurand before the measure-

ment has been performed. 

 

Since the likelihood )~(0 yyf  in essence considers the experimental information, the expecta-

tion yy )~(E0  and the variance )()~(Var 2
0 yuy   should hold true for the probability densi-

ty distribution )~(0 yyf .  

 

According to Weise and Wöger [15, 16], the posterior PDF )~( yyf  can be determined by 

applying the principle of maximum (information) entropy [27] S: 

 

  max~d)~(ln)~( 00   yyyfyyfS      (9) 

 

It is to emphasize that the PME is also used in the GUM Supplement 1 [13] to derive PDFs 

for a variety of differing information scenarios. 
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Equation 9 can be solved with the constraints  yy )~(E0  and )()~(Var 2
0 yuy   of )~(0 yyf  

by the method of Lagrangian multiplicators and one obtains the result 

 

 ))(2/()~(exp)~()~( 22 yuyyyfCyyf               (10) 

 

Accordingly, the distribution )~( yyf  is a product of the model prior )~( yf  and a Gaussian 

N(y,u(y)), i.e. a truncated Gaussian (Fig. 1). Note, that the Gaussian in equation 10 is not an 

approximation as in conventional statistics or a distribution of measured values from repeated 

or counting measurements. It is instead the explicit result of maximizing the information en-

tropy and expresses the state of knowledge about the measurand Y.  

 

 

y0
 

Fig. 1. Illustration of the likelihood )~(0 yyf , the model prior )~( yf , and the posterior 

)~( yyf  given in equation 10 for a non-negative measurand Y. 

 

After )~( yyf  is obtained, the Bayes theorem (equation 11) also allows the calculation of the 

PDF )~( yyf  of an estimate y given the true value y~  of the measurand Y: 

 

)()~()~()~( yfyyfyfyyf  .       (11) 
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The PDF f(y) is uniform for all possible measurement results y and )~( yf  is uniform for all 

0~ y  according to equation 8. Thus, )~( yyf  is obtained from equations 10 and 11 by ap-

proximating the now not available u(y) by a function )~(~ yu   

 

 ))~(~2/()~(exp)~( 22 yuyyCyyf    with  0~ y   (12) 

 

The PDF )~( yyf  is a Gaussian for a given true value y~  of the measurand with the standard 

uncertainty )~(~ yu . Note, that the true value y~  of the measurand Y is now a parameter in equa-

tion 12 and that the variance )(2 yu  of the PDF )~( yyf  equals the variance )~(~2 yu  of the PDF 

)~( yyf , i.e. )~(~)( 22 yuyu   . 

 

4   Calculation of the Standard Uncertainty as a Function of the True Value of the 

Measurand 

 

For the provision and numerical calculation of the decision threshold and detection limit, the 

standard uncertainty of the measurand is needed as a function )~(~ yu  of the true value y~  ≥ 0 of 

the measurand. This function has to be determined in a way similar to u(y) within the frame-

work of the evaluation of the measurements by application of GUM [1]. In most cases, )~(~ yu  

has to be formed as a positive square root of a variance function )~(~2 yu  calculated first. This 

function must be defined, unique and continuous for all y~  ≥ 0 and must not assume negative 

values.  

 

In some cases, )~(~ yu  can be explicitly specified, provided that u(x1) is given as a function 

h1(x1) of x1. In such cases, y has to be replaced by y~  and equation 2 must be solved for the 

estimate x1 of the input quantity X1 which in the following is always taken as the gross effect 

quantity. With a specified y~ , the value x1 can also be calculated numerically from equation 2, 

for instance, by means of an iteration procedure, which results in x1 as a function of y~  and 

x2, ..., xm. This function has to replace x1 in equation 3 and in u(x1) = h1(x1), which finally 

yields )~(~ yu  instead of u(y). In most cases of the models dealt with in this paper one has to 

proceed in this way. Otherwise, )~(~ yu  can be obtained as an approximation by interpolation 
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from the data yj and u(yj) of several measurements. If only )0(~u , y, and u(y) are known, the 

approximation by linear interpolation according to equation 13 is often sufficient for y > 0: 

 

yyyuyyuyu /~)()/~1()0(~)~(~ 222                   (13) 

 

5 Decision Threshold and Detection Limit 

 

Without a detailed mathematical foundation of Bayesian characteristic limits, which may be 

found elsewhere [17, 18, 29, 30], we can now define the characteristic limits for a non-

negative measurand Y which is, for instance, a concentration of an element or an activity of a 

radionuclide in a sample. The true value y~  is zero if the element or the radionuclide is not 

present. The decision threshold and the detection limit are defined [10, 17, 18] on the basis of 

decision about the acceptance of the null hypothesis H0: y~  = 0 against the acceptance of the 

alternative hypothesis H1: y~  > 0.  

 

To solve this decision problem in Bayesian statistics [22], it is necessary to specify an appro-

priate loss function, measuring the consequences of accepting or rejecting H0 as a function of 

the actual measurement result y. In ISO 11929 a quadratic loss function is used as the simplest 

function since there is no further information about the consequences of accepting or rejecting 

H0 and both actions are equally weighted. 

 

The entire procedure then works as follows. As result of the measurement, y and the associat-

ed standard uncertainty u(y) are derived according to the GUM [1] as a complete result of the 

measurement. y and u(y) have to be derived by evaluation of measured quantities and of other 

information by way of the mathematical model which takes into account all relevant quanti-

ties. Generally, it will not be explicitly made use of the fact that the measurand is non-

negative. Therefore, y may become negative, in particular, if the true value of the measurand 

is close to zero. 

 

For the determination of the decision threshold and the detection limit, the standard uncertain-

ty of the decision quantity has to be calculated, if possible, as a function )~(~ yu of the true val-

ue y~  of the measurand. In the case that this is not possible, approximate solutions are de-

scribed below.  
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Then, the decision threshold *y  (Fig. 2) is a characteristic limit which when exceeded by a 

result y of a measurement one decides that the element or radionuclide is present in the sam-

ple. If y < *y , one decides to accept the null hypothesis, H0: y~  = 0, and concludes that the 

element or radionuclide is not found in this sample. If this decision rule  

 

 )0~( * yyyP   (14) 

 

is observed, a wrong acceptance of the alternative hypothesis, H1: y~  > 0, occurs with the 

probability  which is the probability of the error of the first kind of the decision made.  

 

The decision threshold is given by 

 

)0(~
1

* uky                           (15) 

 

with k1- being the (1-)-quantile of the standardized normal distribution. )0(~u  is the uncer-

tainty of the measurand if its true value equals zero. If the approximation )()0~(~ yuyu   is 

sufficient, one obtains  

 

)(1
* yuky   .              (16) 

 

The detection limit #y  (Fig. 2) is the smallest true value of the measurand detectable with the 

measuring method. It is defined by  

 

 )~( #* yyyyP .   (17) 

 

The detection limit #y  is sufficiently larger than the decision threshold *y  such that the 

probability of y < *y  equals the probability  of the error of the second kind in the case of 

#~ yy  .  

 

The detection limit is calculated by 
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)(~ #
1

*# yukyy                       (18) 

 

with k1-  being the (1-)-quantile of the standardized normal distribution.  

 

Equation 18 is an implicit one. The detection limit can be calculated from it by iteration using 

for example the starting approximation *# 2 yy  .  

 

For the numerical calculation of the decision threshold and the detection limit the function 

)~(~ yu  is needed which gives the standard uncertainty of the decision quantity as function of 

the true value y~  of the measurand. This function generally has to be determined in the course 

of the evaluation of the measurement according to the GUM [1]. Often this function is only 

slowly increasing. Therefore it is justified in many cases to use the approximation 

)()~(~ yuyu  . If the approximation )()~(~ yuyu   is sufficient for all true values y~ , then 

 

)()( 11
# yukky      is valid.   (19) 

 

*y0

 

 

Fig. 2 Illustration of the decision threshold *y  and the detection limit #y . 

  

Frequently, the value of y is calculated as the difference (net effect) of two quantity values of 

approximately equal size with x1 being the gross effect and x0 being the background or blank 

effect, both obtained from independent measurements. In this case of 01 xxy   one gets 
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)()()( 0
2

1
22 xuxuyu   with the standard uncertainties u(x1) and u(x0) associated with x1 

and x0, respectively. From this, one obtains )(2)0~(~
0

22 xuyu  , since for 0~ y  one ex-

pects 01 xx  .  

 

If only )0(~2u , y and u(y) are known, the approximation by linear interpolation according to 

Equation 18 is often sufficient for y > 0: 

 

yyyuyyuyu /~)()/~1()0(~)~(~ 222  .  (20) 

 

With this interpolation formula one gets the approximation for the detection limit 

 

)0(~)( 22
1

2
1

2# ukkaay      (21) 

 

with 

 

))0(~)(()/(
2

1
)0(~ 222

11 uyuykuka      (22) 

 

For  = , one receives ay  2#
. 

 

 6     Limits of the Confidence or Coverage Interval 

 

The confidence or coverage interval (Fig. 3) includes for a result y of a measurement, which 

exceeds the decision threshold *y , the true value of the measurand with a probability 1 - . It 

is enclosed by the lower and upper limit of the confidence or coverage interval, respectively 

y  and y  , which are defined by 

 

2/d)~(d)~(
0




yyyfyyyf
y

y





  (23) 
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so that  1d)~( yyyf
y

y




 holds.  

 

Explicitly, the lower and upper limit of the confidence or coverage interval, y  and y   are 

calculated via  

 

)( yukyy p   with )2/1(  p   (24) 

 

)( yukyy q   with 2/1  q    (25) 

 

The parameter  is given by  

 

 


)(/
2 ))((d)2/exp(

2

1 yuy
yuyzz


   (26) 

 

Values of the function (t), which is the distribution function of the standardized normal dis-

tribution, and the quantiles kp of the standardized normal distribution are tabulated, e.g. [31], 

but also available in most spread-sheet applications. 

 

The limits of the confidence or coverage interval are not symmetrical around the expectation 

))~((Eˆ yyfy  . The probabilities of yy ~  and yy ~ , however, both are equal to /2 and 

the relationship 0 <  yy   is valid. If y and u(y) are of similar size, this asymmetry of the 

confidence or coverage interval is clearly visible. But for y >> u(y), the well known formula 

 

)(2/1
, yukyy  
                     (27) 

 

is valid as an approximation. Equation 27 is applicable if )(2 2/1 yuky    . 
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Fig. 3. Illustration of the limits y  and y  of the confidence or coverage interval and of the 

best estimate ŷ  of the true value y~  of a non-negative measurand Y. 

 

 

7     Assessment of an Analytical Technique  

 

Having performed a measurement and an evaluation of the measurement according to the 

GUM [1], the performance of the analytical technique can be assessed in the following way: 

 

A measured result y has to be compared with the decision threshold *y  calculated by means 

of equation 15. If a result of the measurement y is larger than the decision threshold *y  one 

decides that a non-zero effect quantified by the measurand is observed and that the element or 

activity is present in the sample.  

 

To check whether a measurement procedure is suitable for measuring the measurand, the cal-

culated detection limit #y  has to be compared with a specified guideline value, e.g. according 

to specified requirements on the sensitivity of the measurement procedure from scientific, 

legal or other reasons. The detection limit has to be calculated by means of equation 18. If the 
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detection limit thus determined is smaller than the guideline value, the procedure is suitable 

for the measurement, otherwise it is not. 

 

If a non-zero effect is observed, i.e. y > *y , the best estimate ŷ  of the measurand (Fig. 3) can 

be calculated as the expectation of the PDF )~( yyf  and the standard deviation of )~( yyf  is 

the standard uncertainty )ˆ( yu  associated with the best estimate ŷ  of the measurand Y. 

 

)~((Var)ˆ( yyfyu     (28) 

 

Using  from equation 26, the best estimate ŷ  is calculated by  

 

 
 2

))(2/(exp)(
y))~(E(ˆ

22





yuyyu

yyfy        (29) 

 

with the associated standard uncertainty )ˆ( yu  

 

yyyyuyu ˆ)ˆ()()ˆ( 2  .       (30) 

 

The following relationships hold: ŷ  > y and ŷ  > 0 as well as )ˆ( yu  < u(y). For y >> u(y) the 

approximations ŷ  = y and )ˆ( yu  = u(y) are valid. See Fig. 3 for an illustration of the confi-

dence or coverage interval and the best estimate of the measurand. 

 

8     Applications 

8.1    Frequently Used Models 

 

Many applications, also in other fields than measurements of ionising radiation, use models of 

evaluation of the general mathematical form:  

 

 WXXXX
XX

XX
XXXXXXGY m 




 )()(),...,( 4321
75

86
43211   (31) 
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with 




75

86

XX

XX
W   .  

 

In measurements of ionizing radiation, g1 RX   and 02 RX   frequently are the counting 

rates of a gross and a background measurement, respectively. X3 can, for instance, be a shield-

ing correction and X4 an additional general background correction. X5, X6, … are calibration 

and correction factors. If X3 or X4 are not needed, x3 = 1 and u(x3) = 0 or x4 = 0 and u(x4) = 0 

have to be set. 

 

By replacing the quantities in equation 31 by their actual estimates xi and w for W one obtains 

with ggg1 / tnrx   and 0002 / tnrx  : 

 

wxx
t

n

t

n
wxxrrwxxxxxxGy m 










 43

0

0

g

g
430g43211 )()(),...,(    (32) 

 

ng and n0 are the numbers of counted events in the gross and the background measurement of 

duration tg and t0, respectively. 

 

With the partial derivatives W
X

G





1
; WX

X

G





3
2

; WX
X

G





2
3

; W
X

G





4
; 

ii X

Y

X

G





 )5( i , and by substituting the estimates xi, w and y, equation 3 yields the stand-

ard uncertainty u(y) of the measurand Y associated with y:  

 

)())()((

)())()()()(()(

2
rel

2
4

2
3

22
000

2
3gg

2

2
rel

2
4

2
3

22
22

22
31

222

wuyxuxurtrxtrw

wuyxuxuxxuxxuwyu




  (33) 

 

where 


m

i i

i

x

xu
wu

5
2

2
2
rel

)(
)(  is the sum of the squared relative standard uncertainties of the 

quantities X5 to Xm. For m < 5, the values w = 1 and 0)(2
rel wu  apply.  
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For a true value y~  one expects  

 

430/~ xxrwyng    (34) 

 

and with equation 33 one obtains 

 

)(~)]()()~([)~(~ 2
rel

2
4

2
3

22
000

2
3g430

22 wuyxuxurtrxtxxrwywyu  . (35) 

 

This yields for y~  = 0 the decision threshold 

 

)()()()0(~
4

2
3

22
000

2
3g43011

* xuxurtrxtxxrwkuky     (36) 

 

Note that in this class of model functions according to equation 31 the decision threshold does 

not depend on the uncertainty of w. 

 

For the detection limit one obtains  

 

)()]()()([

)(~

2
rel

2#
4

2
3

22
000

2
3g430

#2
1

*

#
1

*#

wuyxuxurtrxtxxrwywky

yukyy













  (37) 

which has to be solved for #y . Equation 37 has a solution if 1)(2
rel

2
1  wuk  .  

 

8.2    Determination of an Activity 

 

In ionizing-radiation measurements, often the activity is determined from a measurement of a 

net count rate value rn = (rg – r0) as the difference of a gross count rate value rg = ng/tg and a 

background count rate value r0 = n0/t0 with time preselection multiplied by a calibration factor 

w with the standard uncertainties u(rg) = rg/tg, u(r0) = r0/t0, and u(w), respectively. This yields 

the simple model  

 

wtntnwrry gg  )//()( 000g     (38) 
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which just is a special case of equation 32 with x1 = rg, x2 = r0, x3 = 1, u(x3) = 0, x4 = 0 and 

u(x4) = 0. Since, however, it is used so frequently, it shall be explicitly dealt with here.  

 

Equation 3 yields the standard uncertainty u(y) of the measurand Y associated with y: 

 

)()//()( 2
rel

2
00gg

22 wuytrtrwyu   with wwuwu /)()(rel  .  (39) 

 

With this information, )~(~ yu  can be explicitly calculated since one expects for a true value y~  

of the measurand a number of counts ng in the gross measurement 

 

gg trwyn  0/~     (40) 

 

Since u2(ng) = ng is valid for a Poisson process, one can calculate )~(~ yu  using equation 39 as 

 

)(~)//)/~(()~(~ 2
rel

2
000

22 wuytrtrwywyu g      (41) 

 

and obtains for y~  = 0  the decision threshold  

 











 

0g
011

* 11
)0(~

tt
rwkuky     (42) 

 

and for the detection limit  

 

)()//)/(()(~ 2
rel

2#
00g0

#2
1

*#
1

*# wuytrtrwywkyyukyy     (43) 

 

which can conveniently be solved by iteration with the starting value *# 2yy  . For  = , 

i.e. k1- = k1- , equation 43 has the simple explicit solution: 
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)(1

/)(2

22

g
2*

#

rel
1

1

wuk

twky
y













 . (44) 

 

8.3 General Measurement of a Net Quantity with Calibration 

 

The simple model of equation 38 can also be used to demonstrate that the approach described 

here is not limited to measurements of ionizing radiation. A model in the form of equation 7 

describes an evaluation of any measurand which is derived from a gross or sample measure-

ment and a background or blank measurement. The value y of the measurand Y is the differ-

ence of the gross signal xg and the blank signal x0 multiplied by a calibration factor w with 

their respective standard uncertainties u(xg), u(x0), and u(w). 

 

wxxy  )( 0g    (45) 

 

Then the standard uncertainty u(y) associated with y is given by: 

 

)())()(()( 2
rel

2
0

2222 wuyxuxuwyu g   with wwuwu /)()(rel  .  (46) 

 

The minimum information requirement to allow for the calculation of the decision threshold 

and the detection limit is that the experiment was successfully performed at least one times 

each for the gross and the background measurements. This means that xg, u(xg), x0, u(x0), w, 

and u(w) are available. In particular, it is not needed for the following that xg and x0 result 

from a Poisson process. 

 

For y~  = 0, one expects xg = x0 and obtains with equation 46 )(2)0(~
0xuu   Then, the deci-

sion threshold is calculated by: 

 

)(2 01
* xuwky       (47) 

 

If no further information on the measurement procedure and on )~(~ yu  is given, the detection 

limit can only be calculated using the interpolation formula (equation 20) and obtains an ex-
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plicit formula for the detection limit according to equations 21 and 22. Note, however, that 

this explicit formula for the detection limit is only an approximation which works best if  

*2yy  . 

 

8.4    Further and Future Applications: Beyond ISO 11929 

 

The procedures described in this paper can also be applied to other measurements. Further 

applications of the approach presented in this paper are described elsewhere: measurements 

with ratemeters [17, 18, 32], albedo dosimeters [33], counting measurements on moving ob-

jects [17, 18], repeated counting measurements with random influences [17], counting meas-

urements on filters during accumulation of radioactive materials [17], alpha spectrometry 

[16], spectrometric measurements [17, 18, 34], unfolding in spectrometric measurements [17, 

34]. Numerical examples are given in refs. [17, 30].  

 

The constraints yy )~(E0  and )()~(Var 2
0 yuy   of )~(0 yyf  used in solving Equation 9 is 

scientifically meaningful if the measurement is unbiased and all components of the uncertain-

ty y~  results from the measurement process. If this is cannot be assumed or if the available 

information about y and y~  does not justify these constraints, other types of PDFs have to be 

used which can be handled using Monte Carlo techniques. This methodology is described in 

the GUM Supplement 1 [13]. Also in such cases characteristic limits can be consistently de-

rived as shortly described below and given in detail elsewhere [28].  

 

Assume a model  )(XGY   according to equation 1 with the vector X of input quantities and 

the output quantity Y. Let prior   be any prior information, e.g. that the measurand is non-

negative. According to the GUM Supplement [13] one has to establish the PDFs )(XXf  tak-

ing into account the measurement results x for X as well as all further information available 

on the behavior of X. By performing an experiment one obtains the vector of measurement 

results )E(Xx   together with its covariance matrix )Cov(XUx   of )(XXf  without the 

prior information. Then, the Markov formula 

 

  XXXX X d))(()()( GYfCYfY     (48) 
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allows calculating the likelihood PDF )( XYfY  and one obtains  )E(Yy   and 

)(Var)(2 Yyu   of )( XYfY . From )( XYfY  the decision threshold is calculated according 

to its definition in equation 14.  

 

The posterior PDF ),( priorXYf  is given with equation 7 by 

 

)()(),( priorprior XX YfYfCYf   (49) 

 

Using the already obtained decision threshold and the definition of the detection limit accord-

ing to equation 17, the detection limit is derived from further Monte Carlo simulations, e.g. by 

a numerical evaluation of the probability  of the error of 2nd kind as a function of the true 

value #~ yy  . The limits of the coverage interval y  and y  are defined consistently with 

equation 23 and can be calculated from the posterior PDF ),( priorXYf . Finally, the best 

estimate ŷ  and its associated standard uncertainty )ˆ(2 yu  are calculated as )E(ˆ Yy   and 

)(Var)ˆ(2 Yyu   of the posterior PDF ),( priorXYf . A detailed publication on these future 

applications can be found elsewhere [28]. 

 

9    Conclusions 

 

- With the GUM there exists an internationally accepted, standardized procedure for the 

determination of measurement uncertainties.  

- Bayesian statistics provides the methodological basis for the GUM which allows tak-

ing into account both Type A and Type B uncertainties in a consistent way.  

- With standard uncertainties according to the GUM, characteristic limits can be calcu-

lated for any measurement procedure according to ISO 11929-7 using Bayesian statis-

tics. 

- The procedures described in this paper and in refs. [17, 18, 29, 30] provide a basis for 

the revision of ISO 11929 Parts 1 to 4. With the revised standard ISO 11929, a con-

sistent standardization of the calculation of characteristic limits will be provided, cov-

ering an extremely wide range of models and applications. 
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- With the Supplement to the GUM, the range of applications of the GUM methodology 

will be widely broadened using Monte Carlo techniques. Characteristic limits can be 

consistently derived also for such future applications.   
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