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Abstract 

This primer is intended for students or newcomers in the fields of metrology and statistics. 
Though it lays emphasis on measurements of ionizing radiation, it offers a generally applica-
ble methodology. It summarizes some basics of the underlying ideas and tries to build a 
bridge from the theoretical background to the practical application.  

Statistics plays an essential role when interpreting measurements of ionizing radiation for the 
purpose of radiological protection. It is needed for the quantification of measurement uncer-
tainties, it provides the tools to decide whether or not the measurement result exceeds the 
background, it allows to assess whether or not a measurement procedure fulfils sensitivity 
requirements, and, last not least, to decide whether or not a result conforms to requirements, 
e.g. from regulations. Due to recent developments in metrology a number of international 
standards and guides exist by which all these aspects can be treated in a consistent and inter-
nationally accepted manner.  

The Joint Committee for Guides in Metrology (http://www.bipm.org/en/committees/jc/jcgm/) 
has issued a number of guides which can be downloaded free of charge under 
http://www.bipm.org/en/publications/guides/. There is the International Vocabulary in Me-
trology (JCGM 2012a), VIM for short, which defines the general terminology in order to have 
an unambiguous language for addressing metrological issues. The Guide to the Expression of 
Uncertainty in Measurement (JCGM 2008a), GUM for short, and its Supplement 1 (JCGM 
2008b, 2009), GUM S1 for short, and Supplement 2 (JCGM 2011), GUM S2 for short, pro-
vide the basis for quantification of measurement uncertainties. Finally, the guide “Evaluation 
of measurement data – The role of measurement uncertainty in conformity assessment” 

(JCGM 2012b) gives guidance for conformity assessments. A methodology for assessing de-
tectability is given in ISO 11929 (ISO 2019a, 2019b, 2019c, 2020). 
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Foreword 

Statistics plays an essential role when interpreting measurements of ionizing radiation for the 
purpose of radiological protection. It is needed for the quantification of measurement uncer-
tainties, it provides the tools to decide whether or not the measurement result exceeds the 
background, it allows to assess whether or not a measurement procedure fulfills sensitivity 
requirements, and, last not least, to decide whether or not a result conforms to requirements, 
e.g. from regulations. Due to recent developments in metrology a number of international 
standards and guides exist by which all these aspects can be treated in a consistent and inter-
nationally accepted manner. The applications of this methodology extend far beyond meas-
urements of ionizing radiation; it can be applied universally. 

The Joint Committee for Guides in Metrology (http://www.bipm.org/en/committees/jc/jcgm/) 
has issued a number of guides which can be downloaded free of charge under 
http://www.bipm.org/en/publications/guides/. There is the International Vocabulary in Me-
trology (JCGM 2012a), VIM for short, which defines the general terminology in order to 
have an unambiguous language for addressing metrological issues. The Guide to the Expres-
sion of Uncertainty in Measurement (JCGM 2008a), GUM for short, and its Supplement 1 
(JCGM 2008b), GUM S1 for short, and Supplement 2 (JCGM 2011), GUM S2 for short, 
provide the basis for quantification of measurement uncertainties. Finally, the guide “Evalua-
tion of measurement data – The role of measurement uncertainty in conformity assessment” 
(JCGM 2012b) gives guidance for conformity assessments. A methodology for assessing de-
tectability is given in ISO 11929 (ISO 2019 a, 2019b, 2019c, 2020). 

The methodology provided by these guides and ISO 11929 has been taken into account also in 
a number of ISO standards dealing with environmental radiation measurements; see e.g. 
Calmet (2014) and Calmet et al. (2016) for surveys. 

This primer extends previous papers which deal with the statistical and practical aspects of 
measuring, estimating, and deciding under uncertainty (Michel 2016, 2017, 2019). It is in-
tended for students of natural sciences who are dealing with any kind of measurements. The 
purpose is to provide them with a theoretical basis enabling them to critically interpret the 
results of their measurements.  
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Quantities and symbols 

Quantities are denoted by capital letters. They have to be carefully distinguished from their 
(measured or true) values which are denoted by the respective lower case letters. In this doc-
ument quantities and symbols are used according to ISO 11929. 

In this standard, a quantity is considered to have a true value for a particular measurement 
problem which is unknown and unknowable. In some applications, one needs to assume a true 
value. 

Y physical quantity of interest, the measurand. The symbol Y is also used for a ran-
dom variable serving as an estimator of the measurand. For measurements of ion-
izing radiation, the measurand is assumed to be non-negative.  

G  model of evaluation, set of mathematical relationships connecting the input quan-
tities to the measurand, e.g. ( , 1,..., )iY G X i n   

ic   sensitivity coefficient 
1 1 ,..., m m

i
i X x X x

G
c

X
 





 

W calibration factor 

w  estimate of the calibration factor 

rel ( )u w  relative standard uncertainty of a quantity W  associated with the estimate w  

Y0 random variable serving as an estimator of Y without taking into account that Y 
is non-negative 

Xi physical quantities, input quantities. The symbols are also used for random vari-
ables serving as estimators of the quantities. 

ix  possible or assumed (true) quantity values of Xi , unknown and unknowable 

xi primary measurement results of Xi, known and fixed 

y  possible or assumed (true) quantity value, unknown and unknowable. It holds 

( , 1,..., )iy G x i n   .  

y  primary measurement result ( , 1,..., )iy G x i n  , known and fixed. The prima-

ry result of a measurement may be negative. 

( )u y  standard uncertainty associated with the primary measurement result y   

ŷ  best estimate of the true value of the measurand. The non-negativity of the meas-
urand is taken into account in the calculation of the best estimate.  

ˆ( )u y  standard uncertainty associated with the best estimate ŷ  

a  set of information. It comprises the ( 1,..., )ix i n  and their associated standard 

uncertainties ( ) ( 1,..., )iu x i n  and potentially existing covariances1, as well as 

                                                            

1 For simplicity, the input quantities ( 1, ..., )iX i n  are supposed not to be correlated in this 
primer, so that covariances need not to be considered. For some advice on how to handle 
covariances, see ISO 11929-3:2019.  
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any other available information about the quantities involved. It includes also the 
values and associated uncertainties of the input quantities not taking, however, in-
to account that the measurand is non-negative.  

  information available before a measurement is performed and taken into account 
for the calculation of the best estimate and its associated standard uncertainty 

*y  decision threshold  

#y  detection limit  

yr  guideline value  

( )P A B  conditional probability for event A being true given B is true 

( )f y x  probability density function (PDF) for a value y given a value x 

( , 0)Yf y y Y   posterior probability density function (PDF) that the true value is  given 

the estimate y taking into account the condition that the measurand Y  is non-
negative. 

,0 ( )Yf y y  posterior probability density function (PDF) that the true value is  given the 

estimate y  not taking into account the condition that the measurand Y  is non-
negative. 

( )f y , ( )f y    prior probability density functions that the true value is   taking into ac-

count the information   available before a measurement is performed. 

( )Yf y y  predictive probability density function (PDF) to obtain a measured value y  if a 

true value y  of the measurand Y  is assumed. 

( 0)Yf y y   predictive probability density function (PDF) to obtain a measured value y  

if a true value 0y   of the measurand Y  is assumed. 

#( )Yf y y y  predictive probability density function (PDF) to obtain a measured value y  

if a true value y  of the measurand Y  equal to the detection limit  is assumed. 

jy  values y from different measurements ( 0,1, 2, ...)j   

iy  intermediate values for approximations of the detection limit #y  

lowy , upy  lower and upper limit of an unspecified coverage interval, respectively, of the 

measurand 

,  lower and upper limit of the probabilistically symmetric coverage interval, 
respectively. The non-negativity of the measurand is taken into account.  

,  lower and upper limit of the shortest coverage interval, respectively. The non-
negativity of the measurand is taken into account.  

,   auxiliary quantities 

gn , 0n  number of counted pulses of the gross effect (index g) and of the background 

effect (index 0), respectively 

y

y

y

y #

y y

y  y 
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in  number of counted pulses obtained from the measurement of the count rate iR  

during a certain measurement duration 

gt , 0t  measurement duration of the measurement of the gross effect (index g) and of 

the background effect (index 0), respectively 

it  measurement duration of the measurement of the count rate iR  

gR , 0R  gross count rate (index g) and background count rate (index 0), respectively 

gr , 0r  estimate of the gross count rate (index g) and of the background count rate 

(index 0), respectively 

g , 0  relaxation time constant of a ratemeter used for the measurement of the gross 

effect (index g) and of the background effect (index 0), respectively 

,  probability of a false positive and false negative decision, respectively 

1   probability for the coverage interval of the measurand 

pk , qk  quantiles of the standard normal distribution for the probabilities p and q, re-

spectively (for instance 1p   , 1   or 1 2 ) 

( )t  distribution function of the standard normal distribution; ( )pk p   applies. 
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1 Introduction 

1.1 General considerations about human knowledge and physical truth  

The problem of human knowledge is still today nicely explained by Plato's Allegory of the 
Cave (Platon, 427 BC – 347 BC, Politeia 7th book, about 370 BC). Plato describes some peo-
ple, who are tied up in a sub-surface cave over their entire life in a way, that they cannot move 
their heads or their bodies. Therefore, they can look only at the wall of the cave in front of 
them. They have only light from a fire burning behind them. Between the fire and their backs 
figures and objects are carried around, which cast their shadows at the wall. The „prisoners" 
can see only these shadows, their own ones and those of their co-prisoners. If the carriers 
speak, the echo comes back from the wall as if the shadows were speaking themselves. Since 
the world of the prisoners is all about these shadows, they take them for the real world. 

So in the world of the prisoners the shadows are the objects present which science has to deal 
with. About 2000 years later Descartes specifies how such a scientific endeavour should be 
performed: „It must be the final goal of scientific endeavour to guide the intellect in a way 
that it gives reasonable and true judgements about the objects present.“ Descartes (1596 – 
1650) Regulae ad Directionem Ingenii, Regula 1. 

However, Descartes’ reasoning – except for a proof of the existence of god – just resulted in 
the only true statement given the uncertainty of human knowledge about the “real world”: 
„Cogito ergo sum.“ Descartes (1596 – 1650) Discours de la méthode pour bien conduire sa 
raison et chercher la vérité dans les sciences. 

However, what are the “objects present”? The sentence „Cogito ergo sum“ does not give an 
answer to this question. So one ends up with the answer of a poet: “… and a dream is all life 
and the dreams themselves are dream …” Calderon de la Barca (1635) La vida es sueňo. 

However, since physicists are pragmatic people, the only meaningful advice can be: Don’t 
care about what is real and what is dream! All our observations are the “objects present”; i.e. 
the phenomena of our world. This is a positivistic approach. Positivism is a philosophical the-
ory stating that knowledge is based on natural phenomena and their properties and relations. 
Data received from the senses provide empirical evidence. Information derived from experi-
ence, interpreted through reason and logic, forms the exclusive source of all knowledge. The 
quoted “interpreted through reason and logic” means the use of a scientific method to obtain 
knowledge. 

The scientific method can be defined as a body of techniques for investigating phenomena, 
acquiring new knowledge, or correcting and integrating previous knowledge. To be termed 
scientific, a method of inquiry is commonly based on empirical or measurable evidence sub-
ject to specific principles of reasoning (“Rules for the study of natural philosophy", Newton 
transl. 1999, pp. 794–96, after Book 3, The System of the World). The Oxford Dictionaries 
Online (Oxford Dictionaries: British and World English, 2016, obtained 28 May 2016) define 
the scientific method as "a method or procedure that has characterized natural science since 
the 17th century, consisting in systematic observation, measurement, and experiment, and the 
formulation, testing, and modification of hypotheses". Experiments need to be designed to test 
hypotheses. The most important part of the scientific method is the experiment.  

Thus, physical science is a systematic enterprise that builds and organizes knowledge in the 
form of testable explanations and predictions about the universe; i.e. the “objects present”.  
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It tries to explain and predict nature's phenomena, based on empirical evidence. Hypotheses 
must be verified scientifically to be regarded as scientific theory. 

To describe the relations between the objects present one needs reason and logic and causali-
ty: nihil fit sine causa. Gottfried Wilhelm Leibniz formulated the Principle of Sufficient 
Reason (Satz vom zureichenden Grund): „Im Sinne des zureichenden Grundes finden wir, 
dass keine Tatsache als wahr oder existierend gelten kann und keine Aussage als richtig, ohne 
dass es einen zureichenden Grund dafür gibt, dass es so und nicht anders ist, obwohl uns die-
se Gründe meistens nicht bekannt sein mögen.“ G.W. Leibniz: Monadologie, § 32; cited from 
German. French Suhrkamp edition 1998, p. 27. 

From causality and the Principle of Sufficient Reason it is just a short step to speak of scien-
tific determinism. Causal determinism, which in physics is known as cause-and-effect, is the 
concept that events within a given paradigm are bound by causality in such a way that any 
state (of an object or event) is completely determined by prior states. In the history of science, 
Laplace’ demon was the first published articulation of causal or scientific determinism by 
Pierre-Simon Laplace in 1814. According to determinism, if someone (the Demon) knows the 
precise location and momentum of every atom in the universe, their past and future values for 
any given time are entailed; they can be calculated from the laws of classical mechanics. 

“We may regard the present state of the universe as the effect of its past and the cause of its 
future. An intellect which at a certain moment would know all forces that set nature in motion, 
and all positions of all items of which nature is composed, if this intellect were also vast 
enough to submit these data to analysis, it would embrace in a single formula the movements 
of the greatest bodies of the universe and those of the tiniest atom; for such an intellect noth-
ing would be uncertain and the future just like the past would be present before its eyes. Une 
intelligence... Rien ne serait incertain pour elle, et l’avenir, comme le passé, serait présent à 
ses yeux." Pierre Simon Laplace (1814) A Philosophical Essay on Probabilities. 

We do not need to start here a discussion whether Laplace’ sentence is right or wrong, be-
cause, unfortunately, we do not have such an intelligence as his demon. And even worse, the 
question is whether or not the world is deterministic or in other words whether or not God 
plays dice. Regarding this latter question we quote Albert Einstein “God does not play dice 
with the universe.” and Stephen Hawking: “So God does play dice with the universe. All the 
evidence points to him being an inveterate gambler, who throws the dice on every possible 
occasion” Stephen Hawking (https://www.hawking.org.uk/in-words/lectures/does-god-play-
dice, obtained 2021.03.21) 

But it does not matter whether we have not enough intelligence to understand nature or 
whether nature is ruled by chance. In any case, there is uncertainty due to lack of information 
and so we end up saying that human knowledge is limited. But, if everything – even the world 
– is uncertain, one has to get involved with probabilities. The success decides about the truth. 
In order to live we have to infer and decide on the basis of common sense on the basis of in-
complete information. And we conclude:  

Uncertainty originates from lack of information, regardless of whether this 
lack is due to nature itself or simply due to ignorance. 

 

 



13 
 

1.2 Radioactive decay as a stochastic process 

A major blow against determinism came from the observation of the radioactive decay and 
the development of quantum mechanics. We shall only shortly discuss these aspects here for 
the case of the radioactive decay.  

The spinthariscope by Crookes (1903) allowed seeing the unpredictable flashes and their ran-
dom occurrences. The Law of the Radioactive Decay was formulated with a decay probability 
 , N being the number of radioactive nuclei 

 
d

( ) (0) exp( )
d

N
A N A t A t

t
         (1.1) 

If the decay probability is small, then the number of nuclei N will practically not change dur-
ing the time of observation. Then, the probability ( )p n  to observe per unit time exactly n de-

cays is given by a Poisson distribution Po( , )n N . If the decay probability is not small com-

pared to the time of observation, the process of radioactive decay can be described by a Bi-
nomial distribution; see below in this chapter.    

The Poisson distribution is a discrete probability distribution that expresses the probability of 
a given number (n = 0, 1, 2, …) of events occurring in a fixed interval of time mt  if these 

events occur with a constant rate, here r N  . The Poisson distribution applies in cases 
where a small probability acts on a large number of items, as e.g. in the decay of a long-lived 
radionuclide. 

The Poisson distribution (Fig. 1) has only one parameter 0   and is given by 

 
e

Po( )
!

n

n
n




  (1.2) 

For the radioactive decay this means 

 
m

m
m

( ) e
Po( , , )

!

N tnN t
n N t

n


    

  (1.3) 

It holds 

 mVar( ) E( )n n N t      (1.4) 

The parameter N  of the Poisson distribution can be estimated from the mean value n   
of the number of decays observed per unit time in experiments by mN t n     .  

 m

e
Po( , , )

!

n nn
n N t

n


   
  (1.5) 

For large mN t    the Poisson distribution becomes a Gaussian or normal distribution which 

has two parameters,   and 0   (see Fig 1.). It is given by 
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 (1.6) 

For the radioactive decay this reads 

 
 2

m
m

mm

1
N( ) exp

22

x N t
n N t

N tN t




 

   
    

      
, i.e. Var( )n  . (1.7) 

For this Gaussian distribution holds also Var( ) E( )n n . 

 

 
Fig. 1: Examples of Poisson distributions (top) and comparison of a Poisson with a normal 

distribution (bottom). 

If the decay probability is not small, then the number of nuclei N will change during the time 
of observation. Then, the probability to observe per unit time exactly n decays is given by a 
Binomial distribution Bi( , )n N  (Fig. 2).  
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The Binomial distribution applies to so-called Bernoulli trials. Independent repeated trials of 
an experiment with exactly two possible outcomes are called Bernoulli trials. Call one of the 
outcomes "success" and the other outcome "failure". Let p be the probability of success in a 
Bernoulli trial, and q be the probability of failure, then a Binomial distribution describes the 
probability Bi( , )k p n , to have success exactly k times in n Bernoulli trials. With q = 1 - p the 

Binomial distribution reads 

 Bi( , ) (1 )k n kn
k p n p p

k
 

   
 

  (1.8) 

 E( ) Var( ) (1 )n n p n n p p       (1.9) 

Applying this to the radioactive decay means 

 m m mBi( , , ) ( ) (1 )n N nN
n N t t t

n
    

    
 

 , i.e.   is something like 
d

d t

   (1.10) 

with 

 m m mE( ) Var( ) (1 )n N t n t t N            (1.11) 

The functions mPo( , , )n N t , mN( )n N t    and mBi( , , )n N t are probability density func-

tions (PDFs) describing the probability distribution of outcomes of counting experiments as a 
consequence of the fact that the radioactive decay is a stochastic process. The counting effi-
ciency is assumed to be unity in this simple example. These PDFs are conditional probabili-
ties to obtain n counts in the measurement time mt  given the decay probability   and the 

number N of radioactive nuclei.  

For larger number of counts, both the Poisson and the Binomial distribution can be well ap-
proximated by a normal distribution (Fig. 3) if the product of the decay probability and the 
measurement time is markedly less than 1. 

What does all that then mean for uncertainty and probability? To answer this question, we 
shall look into these two terms, uncertainty and probability, more generally. 
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Fig. 2: Examples of Binomial distributions.  

 
Fig. 3: Comparison of Poisson, Binomial and normal distributions. 

 

1.3 Uncertainty and probability 

Uncertainty is a general characteristic of human existence. It originates from ignorance. The 
ignorance, that one does not know what the dice will show, whether it will be a girl or a boy, 
whether a wing beat of a butterfly is responsible for today’s weather, when a nucleus will de-
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cay, what the future will be, what the truth is, which quantities influence the results of an ex-
periment, whether there is causal connection between two quantities, whether a system is de-
terministic, stochastic or chaotic, or whether chance is ruling the world.  

Uncertainties are important characteristics of human reasoning, decision making and action 
and, in the end, they are a consequence of limited and incomplete information. Humans al-
ways have to decide and to act under uncertainty, i.e. on the basis of incomplete information. 

In the case of ignorance one can only rely on probabilities. Uncertainty can be quantified by 
probabilities. James Clerk Maxwell said in this context „The true logic for this world is the 
calculus of probabilities, which takes account of the magnitude of the probability which is, or 
ought to be, in a reasonable man’s mind“ (Maxwell 1850). Success decides about the truth.  

A complete description of the uncertainty can be obtained by deriving a probability density 
function (PDF) over the space of possibilities. Probability theory and probability calculus 
provide the tools to establish and propagate probability density functions. Just a few princi-
ples are sufficient for a given problem to derive from the available information the desired 
PDF. Fundamental is the Principle of Indifference, also called Principle of Insufficient Reason 
(Laplace 1812). Given n > 1 distinguishable, mutually exclusive and collectively exhaustive 
events, the Principle of Indifference states that without further information each event should 
be assigned a probability equal to 1/n. The Principle of Indifference is closely related with the 
Principle of Maximum Entropy (PME) (Jaynes 1982) and the Bayes Theorem (Bayes 1763). 

In metrology, these principles are used to quantify uncertainty in measurement. In the 
1990ties the quantification of measurement uncertainties was standardized by the ISO Guide 
to the Expression of Uncertainty in Measurement (GUM) (ISO 1993) and the standard series 
DIN 1319 (DIN 1996, 1999). A Bayesian theory of measurement uncertainties (Weise and 
Wöger 1993) provided a theoretical basis for the GUM. This basis makes use of the Bayes 
Theorem, the Principle of Maximum Information-Entropy and the Product Rule to establish 
and propagate the desired PDFs (see chapter 4). After initial problems of acceptance and man-
ifold discussions the GUM was newly published (JCGM 2008a) and extended (JCGM 2008b, 
2011) by the Joint Committee on Guides in Metrology and today represents the internationally 
accepted methodology for the quantification of measurement uncertainties. 

Uncertainty manifests itself in metrology as follows. By a measurement one obtains an uncer-
tain estimate y  (measurement result) of the unknown and unknowable true quantity value y  
of a measurand Y. So, the conditional probability ( )Yf y y , i.e. the probability that the true 

value of the measurand Y  is y  given the measurement result y  (Fig. 4), provides the com-

plete description of the uncertainty associated with the measurement result y . ( )Yf y y  is the 

PDF of a random variable serving as an estimator of Y; as a PDF it is normalized

( ) d 1Yf y y y




   .  

If further information  is available before a measurement is performed, it is taken into ac-

count in the PDF ( , )Yf y y   instead of ( )Yf y y  which then completely describes the uncer-

tainty. The uncertainty can also be described by a coverage interval [ , ]y y   which contains 

the true value of the measurand with a preselected probability (1 – ) or by the best estimate 
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and its associated standard uncertainty. With the PDF ( )Yf y y  the best estimate ŷ  of the true 

value y  is the expectation  

 ˆ E( ( , )) ( , ) dY Yy f y y y f y y y




          (1.12) 

and the variance  

 2 2ˆ ˆ( ) Var( ( , )) ( ) ( , ) dY Yu y f y y y y f y y y




          (1.13) 

gives the standard uncertainty ˆ( )u y  associated with the best estimate. 

The PDF depends on the available information. The GUM - not so clearly - and the GUM 
Supplement 1 (GUM S1) explicitly make use of the PME and the Bayes Theorem to derive 
various PDFs depending on the available information. If there is more information available 
than y  only, e.g. any other available prior information , the PDF completely describing the 

desired probability is ( , ) ( ) ( )Y Y Yf y y C f y y f y        (compare chapter 5). Then, the best 

estimate of the true value y  is ˆ E( ( , ))Yy f y y   and its associated squared standard uncer-

tainty 2 ˆ( ) Var( ( , ))Yu y f y y  . 

 

Fig. 4:  Schematic of a PDF ( , )Yf y y   and of the limits of a coverage interval [ , ]y y  . 

 

2 Statistical basics 

2.1  General aspects  

According to a dictionary (http://www.dictionary.com/browse/statistics), statistics is the sci-
ence that deals with the collection, classification, analysis, and interpretation of numerical 
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facts or data, and that, by use of mathematical theories of probability, imposes order and regu-
larity on aggregates of more or less disparate elements.  

The following fields of statistics have to be distinguished: 

- descriptive statistics  (also empirical statistics), 
- explorative statistics  (also hypothesis-generating statistics, data-mining), 
- inductive statistics  (also mathematical statistics, inferring statistics).  

In inductive statistics one infers from a random sample (data) the characteristics (value) of a 
basic population (quantity). Such inference needs plausibility which – as explained in the next 
chapter – can be quantified by probability. Probability theory provides the basis for the meth-
ods of testing, estimating, inferring and deciding. Inductive statistics is the topic with which 
we deal in this primer. 

 

2.2  Plausibility and probability  

There are two types of inference (German: Schließen) to be distinguished:  

- deductive reasoning (German: deduktives logisches Denken) whenever enough in-
formation is at hand to permit it;  

- inductive or plausible reasoning (German: induktives oder plausibles logisches 
Denken) when – as is almost invariably the case in real problems – the necessary in-
formation is not available.  

The quote partially already mentioned above „The actual science of logic is conversant at 
present only with things either certain, impossible, or entirely doubtful, none of which (fortu-
nately) we have a reason on. Therefore the true logic for this world is the calculation of prob-
abilities, which takes account of the magnitude of the probability which is, or ought to be, in a 
reasonable man’s mind“ (James Clerk Maxwell 1850) clarifies exactly the distinction be-
tween deductive reasoning, i.e. the science of logic …, and inductive reasoning, i.e. the true 
logic for this world …  

Another quote dealing with this distinction is from E.T. Jaynes (1982) in the reprint of 2002 
edited by G. Larry Bretthorst: “If a problem can be solved by deductive reasoning, probabil-
ity theory is not needed for it; thus our topic is the optimal processing of incomplete infor-
mation.”  

The contrast between deductive reasoning and plausible reasoning can be explained according 
to Jaynes (2003) by the following examples. As is generally credited to the Organon of Aris-
totle (4th century b.c.) deductive reasoning (apodeixis: Beweis) can be analyzed ultimately 
into the repeated application of two strong syllogisms (logische Schlüsse) 

1. If A is true, then B is true. Given A is true; therefore, B is true: A B . 

and its inverse 

2. If A is true, then B is true, given B is false, therefore A is false: A B   . 

These are the tools of deductive reasoning which allow assuring with certainty that a proposi-
tion is either true or false. 
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In plausible reasoning (epagogue: induction) weaker syllogisms are used 

1. If A is true, then B is true, Given B is true; therefore, A becomes more plausible. 

The evidence does not prove that A is true, but verification of one of its consequences 
does give us more confidence in A.  

Another weak syllogism, still using the same major premise, is 

2. If A is true, then B is true. Given A is false; therefore, B becomes less plausible. 

A still weaker syllogism is 

3. If A is true, then B becomes more plausible. Given B is true; therefore, A becomes 
more plausible. 

As a consequence of allowing for plausibility, one needs a quantitative measure of plausibil-
ity. What are the requirements for such a measure? The basic requirements were formulated 
by R.T. Cox (1946) who wanted his system of plausibility to satisfy the following conditions 

I. Divisibility and comparability – The plausibility of a proposition is a real number and 
is dependent on information we have related to the proposition. 

II. Common sense – Plausibilities should vary sensibly with the assessment of plausibili-
ties in the model, i.e. qualitative correspondence with common sense 

III. Consistency – If the plausibility of a proposition can be derived in many ways, all the 
results must be equal. 

See also Jaynes (2003) for more explanations of the “basic desiderata for plausibility” (desid-
eratum = das Erwünschte). 

 

2.3   The quantitative rules: from plausibility to probability 

Probability theory is nothing but common sense reduced to calculation. Laplace, 1819 

The following implications of Cox’ postulates lead the way from plausibility to probability. 
Let A B  be the plausibility of the proposition A given B satisfying Cox’ postulates. Then, 

from the laws of probability follows that there exists a function w  mapping the plausibility to 
the interval  ,0 1  and a positive number m  and that the following three statements hold; see 

also E.T. Jaynes (2003) for further details. 

1. Certainty is represented by ( ) 1w A B   

2. ( ) ( ) 1m mw A B w A B    

3. ( , ) ( ) ( , ) ( ) ( , )w A B C w A C w B A C w B C w A B C     

These postulates imply only these general properties. One may recover the usual laws of 
probability by setting a new function, conventionally denoted P or Pr, equal to wm. Then one 
obtains the laws of probability in a more familiar form 
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1. Certain truth is represented by ( ) 1P A B  , certain falsehood by ( ) 0P A B  . 

2. rule for negation  

( ) ( ) 1P A B P A B   (2.1) 

3. product rule, rule for conjunction (logical „and“: ,AB A B A B   )  

( ) ( ) ( ) ( ) ( )P AB C P A C P B AC P B C P A BC     (2.2) 

4. sum rule, rule for disjunction (logical „or“: A B A B   )  

( ) ( ) ( ) ( )P A B C P A C P B C P AB C      (2.3) 

Since any proposition containing conjunction, disjunction, and negation can be equivalently 
formulated using conjunction and negation alone (the so-called conjunctive normal form), one 
can handle any compound proposition with the above 4 rules. “It is (ought to be) possible, by 
repeated applications of the product rule and sum rule, to arrive at the plausibility of any 
proposition in a Boolean algebra” (Jaynes 1983). 

As soon as we recognize this, it is clear that, instead of saying that ( ) ( ) ip x P A B  is an arbi-

trary monotonic function of x, it is much more to the point to turn this around and say that 

The plausibility x ≡ A|B is an arbitrary monotonic function of p, defined in (0 ≤ p ≤ 1). 

The original mathematical definition of probability was given by James Bernoulli (1713) and 
was used by most writers for the next 150 years as given for example in Laplaces Théorie 
Analytique des Probabilités (1812) 

The Probability for an event is the ratio of the number of cases favorable to it, to the num-
ber of all cases possible when nothing leads us to expect that any one of these cases should 

occur more than any other, which renders them, for us, equally possible. 

Now we can introduce the notation to be used here further. As a formal probability symbol the 
capital P will be used 

P(A|B) 

which signifies that the arguments are propositions. Probabilities whose arguments are nu-
merical values are generally denoted by other functional symbols such as 

 ( , )f r n p  (2.4) 

which denote ordinary mathematical functions. 

The Kolmogorov axioms presented an approach to probability theory phrased in the language 
of set theory and measure theory (Kolmogorov, 1933).  
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1. First axiom: the probability ( )P E  of an event E  from a total event space   is a non-
negative real number 

    ( ) 0P E E    (2.5) 

2. Second axiom: the probability that at least one of the elementary events in the entire 
sample space will occur is 1. 

    ( ) 1P    (2.6) 

3. Third axiom (-additivity): for any countable sequence of disjoint sets (mutually exclu-
sive events , ,...1 2E E ) holds 

    ( ) ( )
1 1

i i
i i

P E P E


 

  (2.7) 

As pointed out by Jaynes (2003), the system of probability used here, differs conceptually 
from that of Kolmogorov in that we do not interpret propositions in terms of sets, but we do 
interpret probability distributions as carriers of incomplete information. Partly as a result, our 
system has analytical resources not present at all in the Kolmogorov system. This enables us 
to formulate and solve many problems – particularly the so-called ill posed problems and 
generalized inverse problems – that would be considered outside the scope of probability the-
ory according to the Kolmogorov system.  

 

2.4  Two schools of statistics 

Given the theoretical basis for plausibility and probability described in the preceding chapter, 
we have to deal with a problem which occurs when using the concept of probability in statis-
tics. There are two basic schools in statistics; that of Bayesian statistics and that of conven-
tional or frequentist statistics. The two schools are contradictive since the term probability 
does not have the same meaning, though many but not all results obtained by the two statistics 
are practically equal. The conventional or frequentist view is that probability is the stochastic 
limit of relative frequencies. The Bayesian view is that probability is a measure of the degree 
of belief an individual has in an uncertain proposition. Due to this fundamental difference the 
two statistics must not be confused with each other.  

Bayesians follow the principle that the mathematical theory of probability is applicable to the 
degree to which a person believes a proposition. The Bayes Theorem can be used as the basis 
for a rule for updating beliefs in the light of new information. Such updating is known as 
Bayesian inference. In his “Essay towards solving a problem in the doctrine of chances“, 
Thomas Bayes (* 1702, † 1761) invented the “Bayesian inference“, i.e. calculating the proba-
bility of the validity of a proposition on the basis of a prior estimate of its probability and new 
relevant evidence (Bayes 1763). Bayesian inference is the natural way of human learning: 
incorporating new experience into the available set of prior assumptions. This is also applied 
in a Bayesian theory of measurement uncertainties (Weise and Wöger 1993). For a general 
introduction to Bayesian statistics see e.g. references (Lee 1989, Bernardo and Smith 1994, 
Robert 2001, Bernardo 2003, Gelman et al. 2003, Gregory 2005). 
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Probability theory and probability calculus provide the tools to establish and propagate proba-
bilities. Just a few principles are sufficient for a given problem to derive from the available 
information the desired probability density function (PDF). Fundamental is the Principle of 
Indifference, also called Principle of Insufficient Reason (Laplace 1812). Given n > 1 distin-
guishable, mutually exclusive and collectively exhaustive events, the Principle of Indifference 
states that without further information each event should be assigned a probability equal to 
1/n. The Principle of Indifference is closely related with the Principle of Maximum Entropy 
(PME) Jaynes 1982) and the Bayes Theorem (Bayes 1763).  

In metrology, these principles are used to quantify uncertainty in measurement. In the 
1990ties the quantification of measurement uncertainties was standardized by the ISO Guide 
to the Expression of Uncertainty in Measurement (GUM) (ISO 1993). After a decade-long 
controversy about the statistical foundation of the GUM, the GUM S1 made the clear state-
ment that the GUM can only work on the basis of Bayesian statistics as formulated in a 
Bayesian theory of measurement uncertainties (Weise and Wöger 1993). This basis makes use 
of the Bayes Theorem, the Product Rule, and the Principle of Maximum (Information-) En-
tropy (PME) to establish and propagate the desired PDFs. After initial problems of acceptance 
and manifold discussions the GUM was newly published (JCGM 2008a) and extended 
(JCGM 2008b, 2011, 2012) by the Joint Committee on Guides in Metrology and today repre-
sents the internationally accepted methodology for the quantification of measurement uncer-
tainties. 

There is a persistent problem, namely that people using the GUM are still living in two differ-
ent worlds: the worlds of Bayesian statistics and of conventional or frequentist statistics. 
Though many results obtained by the two statistics are practically equal, the statistics them-
selves must not be confused with each other. The term probability does not have the same 
meaning in the two worlds of statistics. The conventional or frequentist view is that probabil-
ity is the stochastic limit of relative frequencies. The Bayesian view is that probability is a 
measure of the degree of belief an individual has in an uncertain proposition. This meaning of 
probability in Bayesian statistics is the same as in the statement that “the probability to get a 
six, when tossing a 6-sided dice, is 1/6”. If asked “What is the probability of tossing a six?”, a 
frequentist would answer “I do not know; I did not yet toss the dice.” 

The GUM Suppl. 1 (JCGM 2008b) makes the clear statement that the GUM can only work on 
the basis of Bayesian statistics. Frequentist statistics cannot take into account type B uncer-
tainties. For the definition if type B uncertainties see chapter 5.1. Further it only allows estab-
lishing the conditional probability ( )Yf y y  but not ( )Yf y y .  

 

2.5 Probability: an ambiguous term in statistics  

The confusion about probability in the two types of statistics leads to a lot of misunderstand-
ings and misinterpretations. Let be  an estimate of the true value of a quantity X with 

 x
n

     (2.8) 

Then the statement of conventional or frequentist statistics  
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 ( ) 0,68P x
n n

        (2.9) 

has a completely different meaning than that of Bayesian statistics 

( ) 0, 68P x x
n n

        (2.10) 

In frequentist statistics, Equation (2.9) makes a statement about the probability to obtain an 
average x  of data in experiments given the fixed parameters   and  , while the Bayesian 
statistics statement (2.10) quantifies the probability2 that the parameter   lies within an inter-

val x n x n    / , /  given the fixed value of the data x . D’Agostini (2003) in his 

book “Bayesian Reasoning in Data Analysis” gave a very clear description of the problem: 
“However, conventional statistics says only that X  is a probabilistic statement about x , giv-
en ,  and n. Probabilistic statements concerning  are not foreseen by the theory ( is a 
constant of unknown value), although this is what we are, intuitively, looking for: Having ob-
served the effect x we are interested in stating something about the possible true value re-
sponsible for it. In fact, when we do an experiment, we want to increase our knowledge about 
 and, consciously or not, we want to know which values are more or less believable. A 
statement concerning the probability that an observed value falls within a certain interval 
around  is meaningless if it cannot be turned into an expression which states the quality of 
the knowledge about  itself. Since the usual probability theory does not help, the probability 
inversion is performed intuitively. In routine cases it usually works, but there are cases in 
which it fails.” 

The confusion about probability in the two types of statistics manifests itself also in the no-
menclature. Some examples are listed below. 

- While frequentists speak of confidence intervals and confidence levels, Bayesians use 
the terms coverage interval (sometimes also called credible interval) and coverage 
probability.  

- Frequentist use hypothesis testing to answer the question whether or not a null-
hypothesis 0H  has to be rejected given an alternative hypothesis 1H . The test of a hy-

pothesis can result in false results which are quantified by type 1 and type 2 errors. 
However, if a null-hypothesis 0H is to be rejected that does not mean that the alterna-

tive hypothesis 1H can be accepted. 

The hypothesis testing is particularly problematic with respect to the use of the p-value 
because it does not make a statement about the probability of a true value but rather 
just a statement about how probable it is to obtain a similar result as the actual one in a 
repetition of a measurement.  

Bayesians use a decision theory in combination with an appropriate loss function to 
decide between alternative hypotheses. The choice which hypothesis is accepted is the 

                                                            
2 Actually, the Bayesian Statistics Formula (2.10) is wrong as we shall see in chapter 5.6.1, though its 

interpretation given here is correct.  
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result of a comparison of their respective probabilities (compare chapter 8 on decision 
thresholds) 

- In epidemiology, the term “bias” is used to describe a systematic influence on the out-
come of estimation. In metrology, the term “influencing factor” is used, which may be 
taken into account by a correction, which itself adds to the uncertainty associated with 
a measurement result.  

- In the literature, in particular in epidemiology and risk assessments, one frequently 
finds the term “error”. The error concept, which defines an error as the difference be-
tween a measured value and the true value of a measurand, is outdated. Since the true 
value of a measurand is unknown and unknowable, this error cannot be quantified. 
The GUM therefore uses the term of “remaining error” which again is unknown and 
unknowable and consequently speaks only of uncertainty in measurement.  

Though many results – but by far not all – of frequentist and Bayesian statistics are numeri-
cally identical, they must not be confused which each other because of the different defini-
tions of probability. 

What is the connection between uncertainty and metrology? This will be dealt with in the next 
chapter. 

 

3 Metrology and statistics 

3.1  Quantities, units and values 

The International Vocabulary of Metrology – Basic and General Concepts and Associated 
Terms – (called VIM for short) defines a quantity as a property of a phenomenon, body, or 
substance, to which a number can be assigned with respect to a reference standard. By a 
measurement the value of a quantity is estimated. The quantity value, value of a quantity or 
simply value is a number and a measurement unit together expressing the magnitude of a 
quantity.  

A quantity is characterized by quantity X  = quantity value  X × measurement unit  X , i.e. 

    X X X    (3.1) 

The measurement unit, unit of measurement or simply unit is a scalar quantity; defined 
and adopted by convention, with which any other quantity of the same kind can be compared 
to express the ratio of the two quantities as a number. A unit is a scalar quantity with the value 
1. The unit of a quantity is according to the international SI-system expressed by up to 7 basic 
units. 

   m kg s A K mol cd:Q Q         with rational numbers  , ,...  (3.2) 

The original SI-system consisted of prototypes representing the units. Consequently, the basic 
units were subject to changes with time and influenced by environmental conditions.  
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Under https://en.wikipedia.org/wiki/2019_redefinition_of_the_SI_base_units one finds the 
historical development. In 2019, the SI base units were redefined in agreement with the Inter-
national System of Quantities, effective on the 144th anniversary of the Metre Convention, 20 
May 2019. The redefinition followed an old idea which was proposed already by Max Planck 
in the year 1900. When formulating his radiation law, he pointed to the possibility to use 
“natural measurement units” which would be valid “for all times and for all, even extra-
terrestrial and extra-human cultures”.  
 
Seven natural constants received fixed values in the new SI-system. The numerical values 
originated from equalization calculus by CODATA in the summer of 2017 (CODATA 2017 
special adjustment). As natural constants are believed to have unique true values, the system 
of seven natural constants should be unambiguous.  
 
Note that other quantities dealt with in metrology may have many true values as for instance 
the mass of different objects. However, in a given ideal measurement of a given object, how-
ever, the quantity “mass” is believed to have one unambiguous true value.  
 

 

Fig. 5: Context of the new and the old SI-units (PTB 2017). 

 
The seven natural constants are:  
 
- Frequency of the hyperfine structure transition of the ground state in the 133Cs-Atom, 

Δν = 9 192 631 770 s–1 
 

- Velocity of light in vacuum,  c = 299 792 458 m s–1 
 

- Planck constant,   h = 6,626 070 15 ∙ 10–34 J s (J s = kg m2 s–1) 
 

- Elementary charge,   e = 1,602 176 634 ∙ 10–19 C (C = A s) 
 

- Boltzmann constant,   k = 1,380 649 ∙ 10–23 J K–1 (J K–1 = kg m2 s–2 K–1) 
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- Avogadro constant,   NA = 6,022 140 76 ∙ 1023 mol–1 
 

- The photometric radiation equivalent Kcd of a monochromatic radiation with the fre-
quency 540 · 1012 Hz is exactly 683 Lumen per Watt. 
 

The basic units of the old system are defined in the new SI-system as: 

- Second (s),  1 s = 9 192 631 770/Δν 
 

- Meter (m), 1 m = (c/299 792 458) s = 30,663 318… c/Δν 
 

- Kilogram (kg),  1 kg = (h/6,626 070 15 ∙ 10–34) m–2 s = 1,475 521... ∙ 1040 h Δν/c2 
 

- Ampere (A), 1 A = e/(1,602 176 634 ∙ 10–19) s–1 = 6,789 686... ∙ 108 Δν e 
 

- Kelvin (K), 1 K = (1,380 649 ∙ 10–23/k) kg m2 s–2 = 2,266 665... Δν h/k 
 

- Mol (mol), 1 mol = 6,022 140 76 ∙ 1023/NA 
 

- Candela (cd), 1 cd = (Kcd/683) kg m2 s–3 sr–1 = 2,614 830... ∙ 1010 (Δν)2 h Kcd 
 

3.2  Measuring the value of a quantity 

One has to start with the definition of the measurand Y, i.e. the physical quantity of interest, 
and then to set-up the measurement procedure. It is anticipated here that the measurement 
procedure is suitable to meet the measurement objective and that it is fit for purpose. Together 
with the measurement procedure all possible influence quantities have to be identified which 
might affect the measurement and could be relevant with respect to the estimate y obtained as 
a measurement result. The setting-up of the measurement procedure and the consideration of 
the influencing phenomena or quantities comprise the establishment of the model of evalua-
tion  

 ( , 1,..., )iY G X i n  ,  (3.3) 

connecting all quantities iX  relevant for the measurement mathematically to the measurand Y. 

A measurement model relates output quantities, about which information is required, to input 
quantities, about which information is available. 

If the model of evaluation is correct, Equation (3.3) holds also for the true values of the input 
quantities and the measurand 

 ( , 1,..., )iy G x i n     (3.4) 

By measurements one obtains estimates ( 1,..., )ix i n  of the input quantities and with Equa-

tion (3.3) an estimate of the value of the measurand.  

 ( , 1,..., )iy G x i n    (3.5) 

This modelling of the measurement is the crucial step of any experiment. The model function 
G represents the scientific theory connecting the phenomena associated with the input quanti-
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ties with that quantified by the measurand. The measurand has to be of relevance with the 
measurement objective and the model of evaluation has to describe the scientific theory or at 
least a meaningful approximation of it. In setting up a model of evaluation Ockham’s razor 
should be applied.  

Ockham’s razor means today the principle of economy in science. 

- It says that the simplest theory has to be preferred to other theories, explaining the 
same data. 

- A theory has to be built up in a way that the internal connections are as simple as pos-
sible. 

- Ockham’s principle of economy in science demands, that one does not introduce more 
assumptions into the hypotheses, than actually needed in order to describe the data and 
to produce predictions which can be empirically verified.  

- A hidden agenda is in this context, that hypotheses with few assumptions are easier to 
falsify than complex hypotheses and therefore to be preferred. 
 

The simpler model is the better one of two models – until it is disproved by data. 

The JCGM (2019) has issued a committee draft for comments which gives some advice for 
developing and using measurement models and also how to approach the problem of model 
uncertainties if different models appear to be meaningful. 

 

3.3  Estimating the true value of a measurand 

For the purpose of making a statement about the true value y  of a measurand Y  a random 
variable is assigned to the quantity as an estimator. Frequently, no distinction is made be-
tween the symbol of the quantity and of the estimator; the character Y  is used for both of 
them. 

To work with such an estimator, some rules about random variables have to be looked at. 

A set of elementary events may be describable in the way that a quantity X under random 
conditions shows values x from the set of real numbers  . Then all events of this trial can be 
described by the variable X, called a random quantity or a random variable.  

Consists   of a finite or infinite countable number of values, X is called a discrete random 
variable or quantity; consists   of all real numbers or of partial intervals X is called a contin-
uous random variable or quantity. 

The distribution density ( )f x  and distribution function ( )F x   (also called probability density 
function (PDF) and probability function, respectively) are defined by 

 

( )d ( d )d

( ) ( )d ( ) ( ) ( )d
b x

a

f x x P x X x x x

P a X b f x x F x P X x f x x


   

       
 (3.6) 
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An estimate of the true value of a measurand can be derived by calculating the PDF of the 
estimator. The best estimate is the expectation of the PDF and the squared standard uncertain-
ty is its variance as explained in detail in the next chapter. 

In metrological practice this means that the output quantity Y  is connected to a number of in 
input quantities ( 1,..., )iX i m  by a model of evaluation ( , 1,..., )iY G X i m  . The available 

information consists of the estimates ( 1,..., )ix i m  of the input quantities and their associated 

standard uncertainties. The ( 1,..., )ix i m  are given and fixed and from them one calculates 

the primary measurement result via ( , 1,..., )iy G x i m  . The associated uncertainties 

( ) ( 1,..., )iu x i m  and ( )u y  have to be derived on the basis of the GUM or the GUM S1. This 

involves the PDFs ( , )
iX i if x x   and, finally, ( , )Yf y  x  from which the best estimate ŷ  of Y

and its associated standard uncertainty u y( ˆ)   are calculated as  ˆ E ( , )Yy f y x  and 

 2 ˆ( ) Var ( , )Yu y f y x . 

 

4 Available information and probability density functions (PDFs) 

4.1  General aspects 

There are basically three tools for establishing and updating PDFs; i.e. the Principle of Maxi-
mum Entropy (PME), the Bayes Theorem and the Product Rule. The GUM S1 makes use of 
the PME as well as of the Bayes Theorem. 

According to E.T. Jaynes “Probability Theory: The Logic of Science” (Jaynes 1982) the PDF 
sought can be derived by the Principle of Maximum Entropy (PME) which requires 

    ln d maxY YS f y y f y y y       (4.1) 

The PME consists in choosing as  Yf y y  the most likely density by taking into account rel-

evant information available as so-called constraints and maximizing the entropy S  by apply-
ing a variational method. If nothing was known before, then the prior is uniform according to 
the Bernoulli principle (see definition of the prior below). Only this case is assumed by the 
PME application of the GUM supplement. It is stressed once more that this solution of the 
PME depends essentially on the nearly always incomplete information available and taken 
into account. The GUM S1 explains regarding the  PME: 

“GUM S1: 6.3 Principle of maximum entropy 

6.3.1 When using the principle of maximum entropy, introduced by Jaynes [25], a unique 
PDF is selected among all possible PDFs having specified properties, e.g. specified central 
moments of different orders or specified intervals for which the PDF is non-zero. This method 
is particularly useful for assigning PDFs to quantities for which a series of indications is not 
available or to quantities that have not explicitly been measured at all. 

6.3.2 In applying the principle of maximum entropy, to obtain a PDF  Yf y y  that adequate-

ly characterizes incomplete knowledge about a quantity X according to the information avail-
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able, the functional     ln d    Y YS f y y f y y y  the “information entropy”, introduced 

by Shannon [48], is maximized under constraints given by the information.” 

Note that in the clause above the original functional notations have been changed in order to 
conform to the notation of this booklet. 

Another tool is provided by the Bayes Theorem  

( ) ( )
( , )

( )
Y Y

Y
Y

f y y f y
f y y

f y

 
 



 
   (4.2) 

or by naming the different terms 
( )

( , ) ( )
( )
Y

Y Y
Y

Likelihood f y y
Posterior f y y Prior f y

Evidence f y
   




  . 

The Bayes Theorem was published posthumously in an „Essay towards solving a problem in 
the doctrine of chances” Bayes (1763). It introduces the so-called “„Bayesian estimation“, i.e. 
calculating the probability of the validity of a proposition on the basis of a prior estimate of its 
probability and new relevant evidence.” In other words, the Bayes Theorem provides the 
mathematical form of human learning by starting from available knowledge and updating this 
according to new relevant information. 

In the Bayes Theorem ( , ) ( ) ( )Y Y Yf y y C f y y f y        the prior knowledge is described by 

the so-called prior ( )Yf y   which considers all information available before an experiment is 

performed. The term ( )Yf y y  is the so-called likelihood. By multiplication of the prior with 

the likelihood one obtains after normalization with the normalization constant C the posterior 

Yf y y ( , )  sought. 

A third tool is the Product rule3  

     ( , ) ( ) ( )Yf y y f y y f y  (4.3) 

which simply considers a logical “and” for two disjoint conditions for the probability of a 
result by multiplying the respective probabilities. If the conditions are not disjoint the first 
equation in footnote 3 applies. Some applications of these tools are described in the next 
chapter. Further examples may be found in the GUM S1.  

All the PDFs discussed in this chapter play important roles in measurements for radiation pro-
tection purposes, such as dosimetry and environmental radioactivity. Table A1 in the Appen-
dix gives a survey on these applications. 

Alternatively to these PDFs the PME, the Bayes’ Theorem or the product rule of the probabil-
ity theory can be applied to include known frequency or parameter distributions, respectively. 
If more information about the input quantity involved is available than assumed in ISO 11929, 
it can be used in form of suitable model priors considered in the Bayes theorem. 

                                                            
3 Product Rule: ( , ) ( ) ( ) ( )f A B f A B f A f B A    ; if A  and B  are independent, the 
Product Rule simply reads ( , ) ( ) ( ) ( )f A B f A B f A f B    . 
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A wealth of further distributions exists and may be used depending on the available infor-
mation. The GUM S1 gives advice for quite cases. In addition, also empirically frequency 
distributions from earlier assessments can provide a basis to estimate the uncertainty associat-
ed with a quantity value. See for instance the paper by Cox et al. (2006) regarding neutron 
dosimetry. 

Table A1 in the Appendix summarizes various PDFs frequently used in metrology, in general, 
and in radiation protection in particular. Here some of them are dealt with in detail. 

 

       

                   Thomas Bayes           Andrei Andrejewitsch Markov   Edwin Thompson Jaynes 
    * 1702 † 7.4.1761            * 2.6.1856; † 20.7.1922          * 5.7.1922 – † 30.4.1998 

Fig. 6: Famous persons in the context of a Bayes Theory of uncertainty in metrology 
 (photos taken from Wikipedia). 

 

4.2  The normal or Gaussian distribution: only y  and ( )u y  are known  

If only y  and ( )u y  are known, they are the best estimate and its associated standard uncer-
tainty. If a best estimate y  and its associated standard uncertainty are the only information 
available regarding the quantity Y , then according to the PME the PDF assigned to Y  is a 
Gaussian distribution 2N( , ( ))y u y  

2
2

2

1 ( )
N( , ( )) ( , ( )) exp

2 ( )2 (y)
Y

y y
y u y f y y u y

u yu
 

   
  

  (4.4) 

with the expectation value ˆE( ( , ( )))Yf y y u y y  and the variance ˆVar( ( , ( ))) ( )Yf y y u y u y 2 . 

4.2.1 Some features of the normal distribution 

There are some remarkable special features of the standard normal distribution which are ex-
plained below. 

First, the sum of independent Gaussian-distributed random variables is a Gaussian-distributed 
random variable (Fig. 7). 
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 2 2 1/2
1 1 1 2 2 2 1 2 1 2 1 2( , ); ( , ) ( , ( ) )X N X N Y X X N                   (4.5) 

Second, the Central Limiting Theorem of Statistics reads: Every sum of independent ran-
dom variables with arbitrary distributions goes for a Gaussian or normal distribution, if the 
number of random variables goes for . 

 
Fig. 7: Example for the sum of independent Gaussian distributions.  
It holds 

1
 = 100, 

1
 = 20, 

2 
= 250, 

2
 = 35, 

1+2 
= 350, 

1+2
 = 39. 

 
Third, given the conditional PDFs of two random variable from two normal distributions, dis-
tinguished as cases 1 and 2, the PDF of a random variable given case 1 and case 2 is also a 
normal PDF (Fig. 8): 
 

 

1 2

1 2

1 1 1 1 1 2 2 2 2 2

1 2 1 2 1,2 1,2 1 2

( 1) ( , ) ( ); ( 2) N( , ) ( )

( 1 2) N( , ) ( ) ( )

X X

X X

P P x case N f x P P x case f x

P P x case case P P f x f x

   

 

   

      

 


   (4.6)  

4.2.2  Quantiles of a PDF   

For the calculation of the characteristic limits according to ISO 11929 quantiles of suitable 
PDFs are important. A quantile k of a PDF f x( )  for a probability  is defined by ( ) F k  
with F x( )  being the distribution function F x( )  of the PDF ( )f x . 

Particularly important is the standard normal distribution N(0,1)   

 21
N(0,1) exp / 2

2
y


    (4.7) 
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Fig. 8: Example for the folding of two independent Gaussian distributions. It holds

1
 = 90,  


1
 = 20, 

2 
= 150, 

2
 = 30. 

 
It allows sampling from 2N( , )y   by making a draw z  from the standard normal distribution 
N( , )0 1 and calculating ' ( )y y u y z   . 

A normal distribution N( , )2   with any parameters   and  , in our case y  and ( )u y , and 
the distribution function ( )F y  has the following relationship to the standard normal distribu-
tion N( , )0 1 : 

 ( )
y

F y



   

 
  (4.8) 

with   being the distribution function of the standard normal distribution. 

If a random variable 2N( , )Y   , then the standardization 
y

z





  leads to a standard 

normally distributed random variable Z  because 

 ( ) ( ) ( )
y

P z P y z F z z
    


           

 
 (4.9) 

Of particular importance are the quantiles of the standard normal distribution (Fig. 9). The 
distribution function of the standard normal distribution N(0,1)  is defined by  

1 1
( )

 



   
                  


2 2 2 1

0

1
exp d exp

2 2 2 1 3 (2 1)2 2

x j

j

v x x
x v

j
 (4.10) 
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and its quantile kp for the probability p by Φ(kp) = p. The relations Φ(–x) = 1 – Φ(x) and k1–p 

= −kp apply. 

The one-sided lower quantile k  of the standard normal distribution for the probability  is 

defined by ( )k   . The one-sided upper quantile 1k   of the standard normal distribution 

for the probability   is defined by 1( ) 1k     . The two-sided quantiles of the standard 

normal distribution 1 /2k   of the standard normal distribution for the probability   are defined 

by 1 /2 /2( ) ( ) / 2k k      . The standard normal distributions as well as its frequently used 

one-sided and two-sided quantiles are shown in Fig. 9. 

 
Fig. 9: The standard normal distribution N(0,1) and their one-sided and two-sided quantiles 

for the probabilities , , and . 

 

The particular feature of the standard normal distribution N(0,1)  is that the quantiles of any 
normal distribution N( , )   can be calculated using the quantiles of the standard normal dis-

tribution. The one-sided lower quantile is k    with ( )P x k      , the one-sided 

upper quantile is 1k     with 1( )P x k       , and the two-sided quantiles are 

1 /2k     with 1 /2( ) / 2P x k        and 1 /2( ) / 2P x k       . 
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The numerical values of the quantiles of the standard normal distribution are tabulated, e.g. in 
ISO 11929-1:2019 and DIN ISO 11929-1:2020. Frequently used values are the one-sided 
quantiles for the probability 0,05   with 1 1,65k k     , respectively 0,05   with 

1 1,65k k     , and the two-sided quantiles for the probability 0,05   with 

1 /2 /2 1,96k k     . 

 

4.3 The Gamma distribution: count rate measurements 

The measurand is the count rate R with the true value r . In order to obtain an estimate of the 
count rate a counting measurement is performed. Let n ionizing-radiation events be recorded 
in a counting measurement of a fixed duration t in order to measure a count rate. The number 
n of counts is assumed to be drawn from an underlying Poisson frequency distribution of a 
random variable N with an unknown parameter 0r t  . r  is the true value of the count 
rate R which is the measurand.  

R is estimated by counting of n random decay events during a measurement time t. The Bayes 
Theorem gives then for the posterior PDF: 

 ( ,1/ ) ( , ) ( )R N Rf r n t C f n r t f r      (4.11) 

With this one obtains the likelihood ( , ) ( ) / !; 0,1,2,...r t n
Nf n r t e r t n n      

In order to establish the PDF of the count rate R Bayes Theorem is applied and yields 

 
( ) ( )

( ,1 / )
( )

N R
R

N

f n r t f r
f r n t

f n

 


 
  with 1( )Nf n C  according to equation (4.11) (4.12) 

 ( ,1 / ) ( , ) ( ) ( ) ( ) / !r t n
R N R Rf r n t f n r t f r f r e r t n           (4.13) 

The likelihood ( , )Nf n r t  considers the fact that the counts are random draws from a station-

ary Poisson process with the parameter 0r t   and hence is written 

 ( , ) ( ) / !; 0,1, 2,...r t n
Nf n r t e r t n n      (4.14) 

According to Jaynes (1968) the non-informative prior ( )Rf r  of Jeffreys (1946) given in 

Equation (4.15) should be used for a stationary Poisson process; e.g. 

 ( ) / ; ( 0)Rf r C r r     (4.15) 

By inserting this prior into Equation (4.13) and normalization one obtains the gamma density 
function 

 1( ,1/ ) ( ) / ( 1)!; ( 0)n r t
Rf r n t t r t e n r           (4.16) 
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The expectation E( ( ,1/ )) /Rf r n t r n t   is the measurement result and the variance 
2Var( ( ,1/ )) / /Rf r n t r t n t   leads to the associated standard uncertainty. This information 

is used in ISO 11929-1:2019. See Fig. 10 for some examples of gamma distributions. 

  
Fig. 10: Examples of Gamma distributions.  

 

With the Bayes Theorem ( ) ( ) ( )f y y f y y f y     and the Likelihood ( )f y y , the non-

informative prior according to Jeffreys (1946) together with the so called Fisher Information, 

yI  , 
2

( )
( ) y y

f y y
f y E I

y

  
   

 





, fulfils the requirement of invariance under transfor-

mation or under parameterization. Jeffreys’ priors are in general a class of priors ( ) 1 / xf r r   
with [0,1]x  which satisfy this requirement.  

The Fisher information 
yI   is an indicator for the amount of information about y  which is 

added by the prior. The request to minimize 
yI   and thereby to obtain the reference prior is 

equivalent to minimize the influence of the prior and to maximize information entropy.  

As discussed in detail by Weise et al. (2013) and in ISO 11929-2:2019 Annex A, the particu-

lar case n = 0 must be treated separately:  E ( ,1/ )Rf r n t  and  Var ( ,1/ )Rf r n t  vanish, and 

( , ) ( )Rf r n t r   and a zero uncertainty follows. This is not reasonable since one can never be 

sure that exactly 0R   if no event happens to be recorded in a measurement of finite dura-
tion. Thus, no reasonable statement can be made on the count rate R  if 0n  . With any more 

realistic prior ( )Rf r , one should always obtain  E ( , ) 0Rf r n t   and  Var ( , ) 0Rf r n t  .  
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To avoid this shortcoming it is assumed that the counting measurement is carried out with a 
duration t  chosen suitably large according to the experience of former, similar measure-
ments, so that for any reasonable 0r   at least a few counts can be expected. The duration t  
is therefore no longer arbitrary. This knowledge can justify another non-informative prior out 
of the class of non-informative Jeffreys priors (Jeffreys 1961) with 

  ( ) / v
Rf r C r  with 0 1v    (4.17) 

One can argue that R will be bounded for physical or experimental reasons, although a suffi-
ciently large upper bound need not be specified explicitly. This knowledge is represented by 
an equally likely R between zero and the upper bound, thus, by a uniform prior  

 ( )Rf r C , i.e. 0v   (4.18) 

The Bayes theorem and normalization then yield the gamma density function (for examples 
see Fig. 10). 

 ( ,1/ ) ( ) / !; ( 0)n r t
Rf r n t t r t e n r         (4.19) 

The expectation  E ( , ) ( 1) /Rf r n t r n t    is the measurement result and the variance 

  2 2Var ( ,1/ ) ( ) ( 1) /Rf r n t u r n t    leads to the associated standard uncertainty. This infor-

mation is used in ISO 11929-2:2019 Annex A for small count numbers. 

This result is more reasonable for 0n   since the standard uncertainty ( ) 1 /u r n t   
does not vanish, and the interval with limits ( )r u r  of reasonable estimates of the measur-
and according to GUM turns out to also contain the value 0r  . Asymptotically for large n , 
both approaches lead to the same results. The main differences only occur for very small n . 

By introducing a so-called reference prior (Bernardo 1979), which minimizes yI  , a prior is 

preferred that maximizes the missing information in an experiment. In the case of a Poisson 

process the reference prior according to Yang and Berger (1996) is ( ) 1 /f y y  . The ref-

erence prior ( ) /Rf r t C r   is the prior which minimizes the so-called Fisher-information 

and maximizes the Shannon-Jaynes-information-entropy and thereby adds the least to the 
available information (Bernardo 1979, Berger et al 2009). 

With a non-informative reference prior ( ) / Rf r t C r  one obtains the posterior  

 
1/2( )

( ,1/ ) 0
( 1/ 2)!

r t n

R

t e r t
f r n t r

n

   
 



   .  (4.20) 

This is the Gamma-distribution G( ; 1/ 2,1/ )r n t  with  

   E ( , ) ( 1/ 2) /  Rf r n t r n t  and   2Var ( , ) / ( 1/ 2) /Rf r n t r t n t    (4.21) 

  2( ) / ( 1/ 2) /u r r t n t    . 
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Though the discussions about the right non-informative prior are epistemologically very inter-

esting, the results are of little practical relevance. Whether ( )u r  is equal to 2/n t , 
2( 1/ 2) /n t  or 2( 1) /n t , is only relevant for measurements with extremely small num-

bers of counted events. Whether such measurements can meet any reasonable measurement 
objective can be doubted – at least for the purpose of radiological protection. 

 

4.4  The t-distribution: repeated measurements 

The Student’s t-distribution has the PDF  

 
 

( 1)/22

1
2

( ) 1
/ 2

t
f t




  

 
        

   
 (4.22) 

with   degrees of freedom and  being the Gamma function (Fig. 11). With 
/

x
t

s n

 
  it 

finds its application in repeated measurements. 

 

Fig. 11: Example of a t-distribution for different degrees of freedom  .  

 

Given n  repeated measurements with the indications 1 2, ,..., nx x x  for a quantity with un-

known expectation 0  and variance 0  which is normally distributed according to 2
0 0N( , )   

the resulting PDF is the scaled and shifted t-distribution 2( , / )t x s n  with 1n    degrees of 

freedom (GUM S1 chapter 6.4.9). x  is the average and 2s  the variance of the indications. 
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1

1 n

i
i

x x
n 

   and 2 2

1

1
( )

1

n

i
i

s x x
n 

 
   (4.23) 

The PDF for X  is 

  
 

/ 22
/ 2 1 1

( , ) 1
1( 1) ( 1) / 2 / /

n

X

n x x
f x x s

nn n s n s n


                

 (4.24) 

where  

 1

0

( ) d ( 0)z tz t e t z


     . (4.25) 

 has the expectation and the variance  

 E( )X x  and 
21

Var( )
3

n s
X

n n


 


 (4.26) 

and the best estimate and its associated standard uncertainty are therefore  

 x̂ x  and 
2

2 1
ˆ( )

3

n s
u x

n n


 


 (4.27) 

An application of this case are repeated or “black-box” measurements in which primary re-
sults iy  of the measurand Y are directly indicated without any information for the user about 

the measurement technique and the model of evaluation involved. There are just series of ob-
servations iy . The measurement problem is to compare a series of indications b, b( 1,..., )iy i n
which are judged by the user to represent a “normal”, “background” or “blank” situation with 
a series of indications g, g( 1,..., )iy i n  for another situation, called “gross” situation. To this 

end, a net quantity Y  is investigated 

 g bY Y Y    (4.28) 

and the characteristic limits are evaluated for the measurand Y.  

Primary estimates of gY  and bY  are obtained as the arithmetic means 

 
g

g g,
1g

1 n

i
i

y y
n 

   and 
b

b b,
1b

1 n

i
i

y y
n 

  ,  (4.29) 

respectively, with their respective sample standard deviations  

 
g

1/2

2
g g, g

1g

1
( )

1

n

i
i

s y y
n 

 
    

  and 
b

1/2

2
b b, b

1b

1
( )

1

n

i
i

s y y
n 

 
   

  (4.30) 
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Since no other information is available the 
b, b( 1,..., )iy i n  and 

g, g( 1,..., )iy i n  are assumed 

to be samples from Gaussian distributions with unknown expectations and variances. Accord-
ing to GUM S1 Clause 6.4.9 the arithmetic means 

gy  and by according to Equation (4.29) are 

the best estimates and the standard uncertainties associated with 
gy  and by are given by  

 
2

g g2
g

g g

1
( )

3

n s
u y

n n


 


 , 

2
2 b b

b
b b

1
( )

3

n s
u y

n n


 


 and u y u y u y 2 2 2

g b( ) ( ) ( )  . (4.31) 

In the context of the methods described in ISO 11929-2:2019, the PME yields the scaled and 
shifted t-distributions 

g

2
1 g g g( , / )nt y s n  and 

b

2
1 b b b( , / )nt y s n  as the respective PDFs (GUM S1 

Clause 9.2.3). 

Evidently b g, 3n n  are required. The choice of suitable and meaningful numbers of indica-

tions b 3n   depends on the judgement of the user, the measurement objective and the prevail-

ing circumstances. 

 

4.5 The negative binomial distribution: repeated counting measurements 
with random influences 

The negative binomial distribution (Fig. 12) represents a continuous mixture of a Poisson 
distribution and a gamma distribution. It is of practical value in all those cases where sample 
treatments, such as taking aliquots, positioning before the detector, chemical separations, etc., 
add further (mostly unknown) uncertainties to those of the Poisson process. This leads to a 
overdispersion of the measured counts and Var( ( )) E( ( ))f n f n .  

Because of this, the negative binomial distribution is also known as the gamma–Poisson 
(mixture) distribution. “It is especially useful for discrete data over an unbounded positive 
range whose sample variance exceeds the sample mean. In such cases, the observations are 
overdispersed with respect to a Poisson distribution, for which the mean is equal to the vari-
ance. Hence a Poisson distribution is not an appropriate model. Since the negative binomial 
distribution has one more parameter than the Poisson, the second parameter can be used to 
adjust the variance independently of the mean (Wikipedia: negative binomial distribution, 
15.4.2021)”. 

The negative binomial distribution is a Poisson distribution, where the parameter λ is itself a 
random variable, distributed as a gamma distribution with the shape r and the scale θ = p/(1 
− p) or correspondingly the rate β = (1 − p)/p. 

By folding the Gamma distribution with a Poisson distribution with the ingredients in Equa-
tion (4.32) one obtains the distribution density ( )f X k   

 ( )
!

k

f X k e
k

     and 
1 /

( )  with 0, , 0
( )

a b

a

x e
f a b

a b



 
 

  
 

          (4.32) 

   
0

( ) ( ) d
!

k

f X k e f
k

  


     (4.33)          
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and after some longer derivation (Mende 1990) 

( )
( ) (1 )

( ) ! 1

k
ar k b

f X k b
r k b

           
  (4.34) 

With r a  and 
1

1
p

b



 one obtains with Equation (4.34) the negative binomial distribu-

tion 

 
( )

( ) (1 ) 0,1, 2,...
( ) !

r kr k
f X k p p k

r k

 
     

 
 (4.35) 

The expectation and the variance of the negative binomial distribution can be calculated with 
the parameters given in Equation (4.36). 

 
(1 )

E( )
r p

X
p

 
  and 

2

2

(1 ) E( )
Var( ) E( )

r p X
X X

p r

 
    (4.36) 

 

Fig. 12: Examples of negative binomial distributions. 

 

The parameters r  and p result from the expectation and the variance of the distribution by  

 
2 2

2

E( )

Var( ) E( )

X
r

X X


 

 
 

 and 
2

E( )

Var( )

X
p

X




   (4.37) 

with the mean value  and the standard deviation   obtained from repeated measurements. 
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A particular property of the negative binomial distribution follows from Equation (4.38) if 
one calculates the relative standard deviation, i.e. the coefficient of variation /  . One ob-
tains 

Var( ) 1 1

E( ) ( )

X

X E X r



    (4.38) 

The first term under the radix of Equation (4.38) describes the influence on the coefficient of 
variation caused by the uncertainty of the Poisson process. For a pure Poisson distribution 
without random influences, e.g. by sample treatment or instability of equipment, it holds  

 
Var( ) 1

E( ) ( )

X

X E X



   (4.39) 

The second term 1/ r  in Equation (4.38) quantifies the additional influences of sample prepa-

rations and instrument instabilities. 21/ r   is used in ISO 11929-1:2019 for the parameteri-
zation of uncertainties caused by known random influences. 

 

4.6  The rectangular distribution: very limited information 

If the only information regarding a quantity X is that it is behaving randomly between a low-
er limit minx  and an upper limit maxx , the PME or the Principle of Indifference yields a rectan-

gular distribution (Fig. 13) over the interval min max[ , ]x x   

max min min max1 / ( ),
( )

0 elsewhereX

x x x x x
f x

  
 


 (4.40) 

with the expectation min maxE( ( ))
2X

x x
f x


  and the variance 2 2

max min( ) ( ) /12u x x x  . 

To sample from min maxR( , )x x  make a draw r  from the standard rectangular distribution 

R(0,1)  and calculate min max min( )x x x x r    . 
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Fig. 13: Example of a rectangular distribution 

 

4.7  The Beta distribution: efficiency measurements 

If a series of 𝑛 efficiency measurements in a counting experiment ( , 1,..., )i i n   is available 

and if the prior information is used that the efficiency   must fulfill 0 1  , it can be shown 
(Ullrich and Xu, 2007) that the Bayes Theorem leads to a beta distribution   B( , , )  with the 
parameters   and   (not to be confused with the same symbols in the chapter on quantities 
and symbols as the PDF for the efficiency). The beta distribution (Fig. 14) is given by 

 
 

1 1 1 1

, 1,..., B( , , )

( ) 1
(1 ) (1 )

( ) ( ) ( , )

if i n

B



   

    

     
   

   

 

 
       
 

 

   
 (4.41) 

with the expectation E( ( , 1,..., ))if i n
 

 
 


  (4.42) 

and the variance 
  

   


 
  


2Var( ( , 1,..., ))

( ) ( 1)if i n  (4.43) 

From this, the parameters of the Beta distribution are calculated as 

 
2 1 E( ( , 1,..., )) 1

E( ( , 1,..., ))
Var( ( , 1,..., )) E( ( , 1,..., ))

i
i

i i

f i n
f i n

f i n f i n



 

 
  

   
  

           




 
 (4.44) 

and  
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1

1
E( ( , 1,..., ))if i n

 
 

 
     

 (4.45) 

In the case of a single counting calibration measurement   corresponds approximately to the 
number of detected particles and   corresponds approximately to the number of missed parti-
cles (e. g. derived from a calibration standard or a second detector with known efficiency). So, 
in Equation (4.46) for a reasonable number n of events the detection efficiency is calculated 
and in Equation (4.47) the corresponding statistical variance. For low event numbers see the 
corrections derived in (Ullrich and Xu, 2007).  

With the mean 
1

1

1

n

i
in

 



   and the squared standard deviation 2 2

1

1
( )

1

n

i
i

s
n  



 
   of the 

measured efficiency data the parameters of the Beta distribution are calculated by 

 2
2

1 1

s

 


 
  

 
 and 

1
1 


    
 

 (4.46) 

If the efficiency is not limited to the interval  0,1  but to   L U,  the Beta distribution can be 

expanded to the rescaled four parameter Beta distribution 

    L
L U L U

U L U L

1
( , 1,..., ), B( , , , , ) B , ,if i n

            
   

 
         

    (4.47) 

 

Fig. 14: Examples of beta distributions.  
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4.8  The logarithmic normal distribution: multifactorial influences 

The logarithmic normal distribution (log-normal for short) (Fig. 15) is the exact solution of 
the PME if the measurand is a multi-factorial quantity and the available information consists 
of a mean value (ln( ))m x  of the logarithms of measured values x  and their standard deviation 

(ln( ))s x . 

 

Fig. 15: Example of a logarithmic normal distribution: Densities (top) and distribution func-
tion of LN(ln(100);ln(2)2) (bottom). 

 

 
2
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1 (ln( ) (ln( )))
( (ln( )), (ln( ))) exp
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

 (4.48) 

This log-normal distribution has the expectation 
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 
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 (4.49) 



46 
 

and the variance 

 
 

   
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2 2

Var ( (ln( )), (ln( ))) ( ) ( (ln( )), (ln( )))d
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X X

a

f x m x s x x f m x s x

m x s x s x

. (4.50) 

For products of random variables holds the Multiplicative Limiting Theorem of Statistics: 
The product of n independent random variables with arbitrary distribution densities goes for a 
logarithmic normal distribution, if the number n of random variables goes for . 

 

4.9 Inverse probability density functions 

The general model of evaluation according to Equation (20) of ISO 11929-1:2019 deals with 
counting measurements of ionizing-radiation events. Typically, a net count rate nr  shall be 

converted to the quantity activity ny r w   by use of a calibration factor w. 

The calibration factor itself is calculated from one or more input quantities ( , 5)iX i  by 

6 8

5 7

x x
w

x x

 


 
. For the evaluation of the calibration factor according to ISO 11929-2:2019, the 

free choice of arranging the PDF of an input quantity either in the numerator or in the denom-
inator can have a significant impact on the resulting characteristic values due to the nonlinear-
ity, typically if the relative uncertainty of the calibration factor rel( )u w  becomes larger than 

about 0,3. In the following this is elaborated for the example where the calibration depends on 
the detection efficiency   only, i. e. 1/w  . 

Other nonlinearities than those caused by divisions may occur in the calibration factor, e. g. 
due to corrections of the inverse-square law with uncertain distance or Beer-Lambert’s law 
with uncertain attenuation coefficient or distance. In such cases similar considerations apply. 

This case occurs if either the efficiency   or the calibration factor 
1


w  is used and if a 

meaningful PDF shall be assigned to both quantities. In this case not the same PDF can be 
assigned to   and w . The respective models of evaluation in the simplest form are 

 g 0

1


  y r r  and  g 0y r r w   . Given an efficiency   with the PDF  f    depending 

on the available information , a transformation 
1

( )w g 


   is performed when shifting 

from the first model of evaluation  g 0

1
y r r


    to the second one  g 0  y r r w  and 

1 1
( )g w

w
    follows. Then the PDF  Wf w is calculated by  

 
1

1
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( ( )) 1 1
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d g w
f w f g w f

dw w  


  
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  (4.51) 
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For large relative uncertainties of  , the mean of w      E( ( )) E(1/ ( ))wf w f  can take 

values larger than   1/ E( ( ))f  and also the variance and quantiles can change significantly 

(see Fig. 16). 

If normal distributions are assumed for the PDFs ( )wf w   or   ( )f , the transformations 

1
( )w g 


   respectively 

1
( )g w

w
    result in just minor distortions of the alternative 

PDFs as long as rel( ) 0,25u w  respectively  rel( ) 0,25u  holds. Results based on both PDFs 

will be in agreement and E( ( )) 1/ E( ( ))wf w f     applies. Consequently, it is possible to 

use ISO 11929-1:2019 and to determine the calibration factor 𝑤 either in the numerator or in 
the denominator and the calibration can be done according to Annex A.1. The application of 
ISO 11929-1:2019 and ISO 11929-2:2019 will show just minor differences in the calculated 
characteristic limits.  

For larger relative uncertainties significant differences the PDFs with important implications 
for the resulting characteristic limits occur. For very large relative uncertainties even the de-
tection limit according to ISO 11929-1:2019 may not exist. The results obtained by ISO 
11929-1:2019 and ISO 11929-2:2019 will differ significantly because of the important non-
linearities of the model of evaluation.  

If ISO 11929-2 is applied, the use of a normal distribution for detection efficiencies 𝜀 with 
large relative uncertainties should be avoided and it should be taken into account that 𝜀 is re-
stricted to the interval [0,1]  or smaller.  

The information that the detection efficiency   is typically restricted to an interval   L U,  

can be taken into account by using the rectangular distribution if further information is not 
available. The choice, whether a quantity is in the nominator or the denominator of the cali-
bration factor is arbitrary, as the reciprocal values of the interval boundaries could be used 
instead. It simply depends on whether the upper and lower bounds are given for which quanti-
ty, either   or w , and to which of the quantities a rectangular PDF has to be assigned. For the 
other quantity the proper transformation of the PDF has to be used according to Equation 
(4.55).  

According to Equation (4.52) the original rectangular distribution 

 U L L Ufor

otherwise

1

0

    


  
  




 / ( )

( )f  (4.52) 

with the expectation  

 U L

1
E( ( )) ( )

2
f       (4.53) 

and the variance  

       2
U L

1
Var( ( )) ( )

12
f  (4.54)  
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transforms to the distribution 

 
 2 1 1

U L U L1/ ( ) for
( )

0 otherwise
w

w w
f w

          


 
  (4.55) 

with the expectation  

  
 
 


 


 L U

U L

ln(1/ ) ln(1/ )
E( ( ))wf w  (4.56) 

and the variance  

 

2

L U

L U U L

ln(1/ ) ln(1/ )1
Var( ( ))wf w

 
   

 
     
   (4.57) 

Since the difference between both distributions is apparently significant and the choice be-
tween a numerator or denominator is arbitrary or determined by convention, the rectangular 
distribution is to be used with care in practice, despite its repeated use in the previous exam-
ples for the sake of convenience. Nevertheless, the benefit of the rectangular distribution ei-
ther for the calibration factor or the efficiency is the warranted existence of the detection limit

#y due to the limited range of this distribution. 

 

Fig. 16: Example for the problem of inverse distributions in the case of a rectangular PDF.  

 

4.10 Functions of random variables 

Is X a random variable, then Y = g(X) is also a random variable. Is to each value x of the ran-
dom variable X a value y of a random variable Y uniquely assigned and is the assignment de-
scribed by a function y = g(x), the following Equations hold 

 
( )

( ) ( ) ( ( ) ) ( ) ( ) dY Y X

g x y

F y P Y y P g X y F y f x x


       (4.58) 
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If for a function  ( )y g x   the inverse function x = g-1(y) exists, then the relation between 
FY(y) and FX(x) can be given explicitly. One has, however, to distinguish, whether g(x) in-
creases or decreases monotonously. The following holds: 

 
( ) ( ) if ( ) 0

( ) 1 ( ) if ( ) 0
Y X

Y X

F y F x g x

F y F x g x

 
  

 (4.59) 

 

4.11  Propagating probability density functions 

After establishing the probability distributions of all input quantities, a joint probability distri-
bution, ( )f X x a , has to be formed which in the case of independent input quantities is given 

as 

 
1

( ) ( )
i

m

X i ii
f f x a


 X x a   (4.60) 

with ai  being the subset of information available for iX . A joint probability distribution has to 

be assigned to those iX  that are not independent and inserted in Equation (4.61) for the re-

spective input quantities; see JCGM (2008b) for details. 

The posterior probability distribution ( )Yf y a  is calculated from the joint probability distribu-

tion ( )fX x a  using the model Equation  Y G X  by the so-called Markov Formula 

 ( ) ( ) ( ( )) dYf y f y G   




   Xa a . (4.61) 

The ISO/IEC Guide 98-3-1 recommends the application of Monte Carlo techniques to solve 
Equation (4.61) and to derive ( )Yf y a . Suitable numeric is described in detail by Weise et al. 

(2009). 

Using the Monte Carlo approach, M1,...,i n  Monte Carlo trials are performed for propagat-

ing the probability distributions by drawing sets 1, ,,...,i n ix x  from the probability distributions 

( )
iX if x a . For each of these sets, one calculates 1, ,( ,..., )i i n iy G x x . The vector 

 MM 1,..., ny yy , ordered ascendingly and afterwards assigning cumulative probabilities 

M/i n  to the iy  of My , is a discrete representation of the distribution function 

( ) ( )d
y

Y YF y f  


 a a


  of Y . 

In establishing ( )f X x a , in performing the Monte Carlo trials and in calculating ( )Yf y a  one 

does not take into account that the input quantities iX  and the measurand Y  are non-negative. 

The fact that the measurand Y  is non-negative is only taken into account when calculating the 
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limits of the coverage interval ,y y   or  ,y y  and the best estimate ŷ  and its associated 
standard uncertainty ˆ( )u y . 

If the probability density ( )fX x a  is explicitly available, the integral of Equation (4.61) can 

also have an explicit solution. 

 

5 A Bayesian theory of uncertainty in measurement 

5.1  General aspects 

“Bayesian estimation“, a reasoning method published in 1763 posthumously by Thomas 
Bayes (* 1702 † 1761) as an „Essay towards solving a problem in the doctrine of chances“, 
means calculating the probability ( )f A B  of the validity of a proposition A  on the basis of a 

prior estimate ( )f A  of its probability and new relevant evidence B  by using the so-called 
Bayes Theorem  

 ( ) ( ) ( ) ( )f A B f B f B A f A    (5.1) 

The Bayes Theorem represents the natural form of learning from experience. 

In metrology one has a measurement result y  which is known and fixed4. The probability for 
a particular y  being the true value, which is unknown and unknowable, has to be determined. 
It is to emphasize here again that a statement about y  can only be derived on the basis of 
Bayesian statistics. In order to make probability statements about y  given y, one starts with a 
model providing a joint probability distribution for y  and y; see e.g. Gelman et al. (2014). 
The joint probability density function (PDF) of y  and y  can be written as a product of two 
densities.  

 ( , ) ( ) ( )Y Y Yf y y f y f y y     (5.2) 

( )Yf y   is called the prior distribution or prior for short comprising the information exist-

ing before a measurement is performed, and  

( )Yf y y  is called the likelihood and is the probability to obtain a measurement result y  given 

a true value y . 

Applying Bayes Theorem5 to the right side of Equation (5.2) yields the posterior density  

 ( ) ( ) ( ) / ( )Y Y Y Yf y y f y f y y f y     with ( ) ( ) ( )dY Y Yf y f y f y y y     . (5.3) 

                                                            
4 This applies also to repeated measurements where the individual results as well as the mean value 
and the standard deviation are given as fixed. 
5 Bayes Theorem: ( ) ( ) ( ) ( )f A B f B f B A f A   . In this case the Bayes Theorem reads: 

( ) ( ) ( ) ( )Y Y Y Yf y y f y f y y f y      
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The probability for y  is the proposition to be updated from a prior estimate given the new 
relevant information represented by a measurement result y . The probability density function 
(PDF) ( )Yf y y  according to Equation (5.3) is the updated PDF for y  given y  and the  

prior information ( )Yf y . It is the posterior probability density function or called posterior 

for short. It provides a complete description of the uncertainty regarding the true value y  of Y 
associated with y . It can be derived from the Bayes Theorem in equation (5.4). 

 
( ) ( )

( )
( )

Y Y
Y

Y

f y y f y
f y y

f y




 
  (5.4) 

( )Yf y  is the probability to obtain a measurement result y  which does not depend on y  and, 

with fixed y, can thus be considered a constant. A constant probability ( )Yf y  to obtain a re-

sult y means nothing more than that the measurement procedure yields reproducible results.  

The assumption that ( )Yf y  is constant in metrology due to the requirement of a measurement 

procedure being reproducible does not hold for all applications of the Bayes Theorem in fields 
outside metrology. See for instance the example in chapter 3 of Bernardo (2003). 

Therefore, in metrology the Bayes Theorem frequently is simply written in the form 

 ( ) ( ) ( )Y Y Yf y y f y f y y     (5.5) 

or 

 ( ) ( ) ( )Y Y Yf y y C f y f y y      (5.6) 

with C being a normalization constant. 

Equation (5.5) is the basis of the Bayesian theory of uncertainty in measurement according 
to Weise and Wöger (1993) which is used in ISO 11929:2010 and ISO 11929:2019 (ISO 
2019a, ISO 2119b, ISO 2019c, and ISO 2020).  

There are two equivalent ways to determine ( )Yf y y ; either by determining the left side of 

Equation (5.5) using the Principle of Maximum (Information-) Entropy (PME) (Jaynes 1982, 
1989) or by calculating the right side of Equation (5.5) thereby applying the Bayes Theorem 
(Bayes 1763). Both methods need additional information in order to solve the problem: the 
PME needs constraints and the Bayes Theorem needs information on the likelihood and a 
prior. Finally, the posterior ( )Yf y y  has to be normalized.  

The prior ( )Yf y  considers all information available before the measurement is performed. If 

no particular prior information is at hand a so-called non-informative prior has to be applied. 
According to Jeffreys (1946) a non-informative prior should be invariant under translations. 
This is fulfilled by so-called Jeffreys prior with  

 ( ) / ( 0)Yf y C y y     (5.7) 

The best estimate ŷ  of the measurand Y is the expectation of ( )Yf y y  
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 ˆ E( ( )) ( )dY Yy f y y y f y y y       (5.8) 

The squared standard uncertainty 2 ˆ( )u y  associated with the best estimate ŷ  is the variance 

of ( )Yf y y  

 2 2ˆ ˆ( ) Var( ( )) ( ) ( )dY Yu y f y y y y f y y y        (5.9) 

The VIM distinguishes two ways by which measurement uncertainties can be derived: type A 
and type B. Type A uncertainties are derived from repeated or counting measurements. Type 
B uncertainties result from other sources. For short we call them type A and type B uncertain-
ties. But they are equivalent and the „types“ distinguish only the ways the uncertainties are 
obtained. 

 

5.2 The methodology according to the GUM S1  

The methodology of the GUM S1 is used in ISO 11929 by starting from a model of evalua-
tion ( , 1,..., )iY G X i n   connecting input quantities iX  mathematically to the measurand Y. 

It proceeds in two steps.  

First, the prior knowledge that the measurand is non-negative6 is separated from ( )Yf y y  

applying the product rule and describing this prior knowledge by the Heaviside step function 

 , ,( ) ( ) ( ) ( ) H( )0 0Y Y Y Yf y y C f y y f y C f y y y           (5.10) 

  
 

 

const 0

H( )
0 0Y

y

f y y
y

 
  





 


 (5.11) 

,0 ( )Yf y y  is the PDF of a random variable Y0 serving as an estimator of Y, which does not 

take into account the non-negativity of the measurand.  

Second, the PDF ,0 ( )Yf y y  is obtained by applying Bayes Theorem or the Principle of Max-

imum (Information) Entropy7 (PME) (Jaynes 1982, 1989) in accordance with the GUM S1 
which does not use any prior information or at least non-informative priors.  

In other cases, the Bayes Theorem is applied in combination with a non-informative prior 

,0 ( )Yf y  or with an informative prior reflecting any other information available before a meas-

urement is performed. 

                                                            
6 In a normal evaluation of the measurement result y  the non-negativity is not taken into account. 
Therefore, a result y  can occasionally become negative.  
7 The Principle of Maximum Entropy (PME):     ,0 ,0ln d maxY YS f y y f y y y       
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 ,0 ,0 ,0( ) ( ) ( )Y Y Yf y y C f y f y y      (5.12) 

Given the same available information, the two approaches (PME and Bayes Theorem) are 
equivalent; see Weise et al. (2013, Appendix A.3) for a proof. 

The primary measurement result or primary estimate y  is the expectation of ,0 ( )Yf y y , 

i.e. ,0E( ( ))Yy f y y  , and its squared associated standard uncertainty is the variance of 

,0 ( )Yf y y , i.e. 2
,0( ) Var( ( ))Yu y f y y  . 

ISO 11929-2:20198 is based on the GUM S1 approach. For a model of evaluation, 
( , 1,..., )iY G X i n   and a given set a  of information, first the PDFs ( )

iX if x a  of the input 

quantities have to be stablished. This is done by making use of the PME or the Bayes Theo-
rem in combination with non-informative priors. The Markov Formula and Monte Carlo 
methods are used to propagate the distributions and to obtain the PDF ,0 ( )Yf y a . The factori-

zation according to Equation (5.5) is maintained. If additional prior information is available it 
can be taken into account using the methodology of ISO 11929- 2:2019. 

The available information is summarized in ISO 11929-2:2019 by the symbol a . It comprises 
all information about the measurement problem and the values of the input quantities and the 
measurand available when the evaluation of a measurement is performed. From this infor-
mation a  the PDFs ,0 ,0( ) ( )

i iX i X i if x f x aa  of the input quantities Xi have to be stablished 

( ia  being the subsets of information available and relevant for iX ).  

The GUM S1 gives detailed advice how the PDFs have to be established. Special cases of 
obtaining PDFs ,0 ( )

iX i if x a  are dealt with in ISO 11929-1:2019 Appendix A for repeated 

counting measurements with random influences and in ISO 11929-2:2019 Appendix A for 
measurements with low count numbers.  

After establishing the PDFs of all input quantities, a joint PDF, ,0 ( )f X x a , has to be formed 

which in case of independent input quantities is given as  

,0 ,01
( ) ( )

i

m

X i if f x aX x a    (5.13) 

A joint PDF has to be assigned to those iX  that are not independent and inserted in Equation 

(5.13) for the respective input quantities. 

The posterior PDF ,0 ( )Yf y a is calculated from the joint PDF ,0 ( )fX x a  using the model 

Equation  , 1,...,iY G X i n   by the so-called Markov-Formula  

                                                            
8 We start here with of ISO 11929-2:2019 because it provides the more general case described in the 
GUM S1. Historically, the GUM which provides the basis of ISO 11929-1:2019 was published before 
the GUM S1. However, the statistical basis of the GUM was only properly described in the GUM S1. 
Therefore, the GUM is presently under revision to make it more consistent with the statements in the 
GUM S1. 
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,0 ,0( ) ( ) ( ( )) dYf y f y G




   Xa ξ a ξ ξ    (5.14) 

The GUM S1 recommends the application of Monte Carlo techniques to solve Equation 
(5.14) and to derive ,0 ( )Yf y a . Suitable numeric is described in detail elsewhere (Weise et al. 

2013). Using the Monte Carlo approach, M1,...,i n  Monte Carlo trials are performed for 

propagating the distributions by drawing sets 1, ,,...,i n ix x  from the PDFs ,0 ( )
iX i if x a . For each 

of these sets, one calculates 1, ,( ,..., )i i n iy G x x . The vector  
MM 1,..., ny yy , ordered ascend-

ingly and afterwards assigning probabilities M/i n  to the iy  of My , is a discrete representation 

of the distribution function of the posterior ,0 ,0( ) ( ) d
y

Y YF y f  


 


 a a  of Y .  

If the PDF ,0 ( )fX x a  is explicitly available, the integral of Equation (5.14) may also have an 

explicit solution. 

The primary estimate y of the measurand Y is calculated as the expectation of ,0 ( )Yf y a  

 ,0 ,0E( ( )) ( ) dY Yy f y f  




  a a  (5.15) 

and the squared standard uncertainty associated with the primary estimate y is the variance 
of ,0 ( )Yf y a  

 2 2
,0 ,0( ) Var( ( )) ( ) ( ) dY Yu y f y y f  





   a a   (5.16) 

The final result, i.e. the best estimate, is obtained by considering the non-negativity of the 
measurand by the Heaviside step function according to Equations (5.18) and (5.19) 

 ,0 ,0( ) ( ) ( ) ( ) H( )Y Y Y Yf y y C f y y f y C f y y y           (5.17) 

This yields the best estimate 

 
0

ˆ E( ( )) ( ) dY Yy f y f  


  a a  (5.18) 

and its associated standard uncertainty 

 . 2 2

0

ˆ ˆ( ) Var( ( )) ( ) ( ) dY Yu y f y y f  


   a a  (5.19) 

The characteristic limits are derived as quantiles of the suitable PDFs as described in detail in 
ISO 11929-2:2019. 
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5.3  The GUM: an approximate and minimalistic concept  

The Bayesian theory of measurement uncertainties (Weise and Wöger 1993), which provides 
a basis of the GUM approach, factorizes the desired PDF ( )Yf y y  

 ,0 ,0( ) ( ) ( ) ( ) H( )Y Y Y Yf y y C f y y f y C f y y y           (5.20) 

with 

  
 

 

const 0

H( )
0 0Y

y

f y y
y

 
  





 


 (5.21) 

and derives ,0 ( )Yf y y  by PME (Jaynes 1982) or the Bayes’ Theorem. Again, one assumes as 

the only prior information that the measurand Y is non-negative. 

If only y  and ( )u y  are known, they are the best estimate and its associated standard uncer-

tainty. Thus, they give for the application of the PME the constraints,  ,0E ( )Yy f y y  and 

 2
,0( ) Var ( )Yu y f y y  . The PME leads with these constraints y and ( )u y  to the searched 

PDF ,0 ( )Yf y y  by means of variational methods and Lagrange multiplicators and yields the 

solution     2 2
,0 exp / (2 ( ))Yf y y C y y u y       and thus 

       2 2exp / (2 ( ))Y Yf y y C f y y y u y         (5.22) 

The Gaussian distribution in Equation (5.22) is neither an approximation nor a probability 
distribution from repeated or counting measurements. It is based on the information about the 
measurand in terms of constraints on the PME. This is different from the frequentist point of 
view which allows only for likelihoods based on repeated measurements. 

If by turning the argument one assumes that only a true value y  and its associated standard 

uncertainty ( )u y   are known, one obtains the constraints  E ( )Yy f y y   and 

 2 ( ) Var ( )Yu y f y y    which yield with the PME     ln d maxY YS f y y f y y y       the 

solution 

     2 2exp / (2 ( ))Yf y y C y y u y         (5.23) 

Again, this is neither an approximation nor a probability distribution from repeated or count-
ing measurements. 

The GUM and ISO 11929:2010 and ISO 11929-1:2019 are minimalistic for the purpose of 
general applicability and therefore assume that only y  and ( )u y  are known. This leads to the 
Gaussian PDF ( )Yf y y  in Equation (5.22). The PDF describing the prior knowledge is also 
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minimalistic, namely it is only assumed that the measurand is non-negative. The knowledge 
0y  is then taken into account by a Heaviside function H( )y  as PDF. 

It must be emphasized that the user is free to take into account more information, if it is avail-
able. Then, one has to follow the GUM S1 approach and to use the tools provided by the 
PME, the Product Rule, and the Bayes Theorem for establishing, updating and propagating 
distributions. 

ISO 11929-1:2019 is based on the GUM approach and only makes use of the factorization of 
Equation (5.20) and of expectations and variances of suitable PDFs ,0 ( )Yf y y  without speci-

fying the underlying PDFs. Thus, ISO 11929-1:2019 is a special case of the methodology of 
ISO 11929-2:2019. It is assumed that the information available a consists only of the primary 
measurement results xi of Xi and the standard uncertainties u(xi) associated with the xi.  

For those input quantities Xi which are count rates the PDFs ,0 ( )
iX i if x x  are Gamma distribu-

tions. In ISO 11929-1:2019 the GUM approach with Gaussian PDFs is used and the variances 
of the PDFs of the count rates are taken into account.  

The primary measurement result y  and its associated standard uncertainty ( )u y  are obtained 
according to Equations (5.22). 

The final result is obtained by considering the non-negativity of the measurand by the Heavi-
side step function according to Equations (5.24) to (5.26) 

  2 2
,0( ) ( ) ( ) exp ( ) / 2 ( )) H( )Y Y Yf y y C f y y f y C y y u y y              (5.24) 

then yields the best estimate 

 ˆ E( ( )) ( ) dY Yy f y f  




  a a  (5.25) 

and its associated standard uncertainty 

 2 2ˆ( ) Var( ( )) ( ) ( ) dY Yu y f y y f  




    a a  (5.26) 

The characteristic limits are calculated as quantiles of the suitable PDFs using the quantiles of 
the standard normal distribution. 

In spite of its widespread and increasing use, the applicability of the GUM is limited. It is an 
approximation. The standard uncertainties are the result of a Taylor expansion of the model of 
evaluation truncated after the linear term. In principle, it should only be applied to models 
which are linear or which at least can be sufficiently linearized. If the GUM approximation is 
not sufficient for the model of evaluation the GUM offers a second order approximation 
which, however, is extremely unhandy and moreover has its own limitations. In this case, the 
approach of the GUM S1 helps to solve the problem in general. The GUM is actually a spe-
cial case contained in the more general approach of the GUM S1 which widely extends the 
applicability of the GUM methodology.  
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5.4  Calculation of uncertainties in measurement according to the GUM 

Given a model of evaluation ( ; 1,..., )iY G X i n   an estimate y  of the output quantity Y  is 

calculated by ( ; 1,..., )iy G x i n  . From the estimates ix  of the input quantities iX  the com-

bined standard uncertainty ( )u y  associated with y  is calculated using the covariances 

( , )i ju x x  

 2

, 1

( ) ( , )
n

i j
i j i j

G G
u y u x x

X X

 


   , (5.27) 

 
1

2 2 2

1 1 1

( ) ( ) 2 ( ) ( ) ( , )
n n n

i i i j i j i j
i i j i

u y c u x c c u x u x r x x


   

            (5.28) 

which in the case of independent input quantities iX  yields the well-known Equation 
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2 2 2 2

1 1,...,

( ) ( ) ( )
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n n

i i i
i ii x x
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u y u x c u x

X 

     
  

   (5.29)  

 with  

 i ic G X    (5.30) 

If the partial derivatives are not explicitly available, they can be numerically approximated 
sufficiently by differential quotients making use of the standard uncertainty ( )ku x  as an in-

crement of the kx . 

    1 1
1

,..., ( ) / 2,..., ,..., ( ) / 2,...,
( )
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k i i n k i i n

i i

G
G x x u x x G x x u x x

x u x


    


 (5.31) 

In many instances, a simple calculus for independent quantities is helpful. 

Sums of quantities 

 2 2

1 1

( ) ( ) ( )
n n

i i
i i

y x u y u x
 

      (5.32) 

Relative uncertainty 

 rel ( ) ( ) /u x u x x  (5.33) 

Product of quantities with m n  

 
m n m n n

i i i j i
i j m ii j m

y x x u y u x u x u x
     

        2 2 2 2
rel rel rel rel

1 1 11 1

( ) ( ) ( ) ( )  (5.34) 
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Throughout this equation, modify the summation over i to start at 1 and end at m and the 
summation over j to start at m+1 and end at n. Moreover, replace z by x and introduce the ad-
ditional constraint that m<n. 

Empirical correlation 
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 (5.35) 

Correlation coefficient 
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 (5.36) 

Explanations of and rules to handle covariances are given in ISO 11929-3:2019, Annex A.  

 

5.5  Calculation of uncertainties for counting measurements according to the 
GUM 

In order to clarify this procedure by a simple example, assume e.g. a counting measurement 
with a model of evaluation  

g 0 n g g 0 0( ) ( / / )y r r w r w n t n t w         (5.37) 

and an associated standard uncertainty 

2 2 2 2 2 2 2 2
g g 0 0 g g 0 0

2 2 2 2 2
g g 0 0 g g 0 0

( ) ( ) ( ) ( ( ) ( ) )

( ) ( ) ( )

u y n t n t u w w u n t u n t

n t n t u w w n t n t

     

     
 (5.38) 

Equation (5.37) is a general model in which a net signal, calculated by subtraction of a back-
ground or blank signal from a gross signal, is multiplied by a calibration factor to calculate the 
estimate of the measurand. Since no further assumption about the measurement is made it 
demonstrates the general applicability of the concept of ISO 11929:2010 also beyond nuclear 
radiation measurements. A more general form of the above model is given by: 

 6 8
1 2 3 4

5 7

...
( )

...

x x
y x x x x

x x
     with 1 g g g/x r n t   and 2 0 0 0/x r n t   (5.39) 

Equation (5.39) is a very common model of evaluation in nuclear radiation measurements. 
The particular is that / 1 g g gx r n t  and 2 0 0 0/x r n t   are the gross and the background 

count rates, respectively. 3x  is shielding factor, 4x  a general background term and 

6 8

5 7

...

...

x x
w

x x
  a calibration factor. With 3 1x  , 3( ) 0u x  , 4 0x  , and 4( ) 0u x   the model of 

Equation (5.39) also contains the simplest model according to Equation (5.37).  
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Knowing that the counts gn  and 0n  are obtained from a Poisson process allows quantifying 

the uncertainty as 2 2
1 g 0( )u x n t  and 2 2

2 0 0( )u x n t , respectively. Thus, one obtains the 

standard uncertainty  

 
2 2 2 2 2 2 2 2 2 2

1 3 2 2 3 4 rel

2 2 2 2 2 2 2
g g 3 0 0 0 3 4 rel

( ) ( ( ) ( ) ( ) ( )) ( )

( ( ) ( )) ( )

u y w u x x u x x u x u x y u w

w r t x r t r u x u x y u w

     

     
 (5.40) 

with 
2

2
rel 2

5

( )
( )

m
i

i i

u x
u w

x

   being the relative uncertainty of the calibration factor w . 

 

5.6  Calculation of uncertainties for counting measurements with random 
influences according to the GUM 

5.6.1 Repeated measurements and random influences 

Random influences due to, for instance, sample treatment and instruments cause measurement 
deviations, which can be different from sample to sample. In such cases, the counting results 

in  of the counting measurements on several samples of a radioactive material to be examined, 

on several blanks of a radioactively labelled blank material, and on several reference samples 
of a standard reference material are therefore respectively averaged to obtain suitable esti-
mates 1x  and 2x  of the input quantities 1X  and 2X  and their associated standard uncertainties 

1( )u x  and 2( )u x , respectively; see Equation (5.39). Accordingly, 1X  shall be considered as 

the mean gross count rate and 2X  as the mean background count rate. Therefore, the measur-

and Y shall also be taken as an averaged quantity, for instance as the mean net count rate or 
mean activity of the samples. All symbols belonging to the countings on the samples, blanks 
and reference samples are marked by the subscripts g, 0 and r, respectively. In each case, 
arithmetic averaging over m countings of the same kind carried out with the same preselected 
measurement duration, t (time preselection), is denoted by an overline. For m counting results 
( 1, ..., ;  1)i m m   which are obtained in such a way and shall be averaged, the mean value 

n  and its uncertainty 2 ( )u n  of the values in  are given by 

 2 2

1 1

1 1 1 1
    ( ) ( )

3 3

m m

i i
i i

m
n n u n n n n n

m m m m 

        
   (5.41) 

Obviously, 3m   is required. A derivation of equation (5.41) was given by Weise et al. 
(2013). 

5.6.2 Procedure with unknown influences 

In the case of unknown influences, the following expressions are valid for the mean gross 
count rate 1X  and the mean background count rate 2X  

1 g g 2 0 0    x n t x n t   (5.42) 

2 2 2 2 2 2
1 g g 2 0 0( ) ( )     ( ) ( )u x u n t u x u n t   (5.43) 
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With the approach according to Equations (5.39) and (5.40) one obtains 

g 0
3 4

g 0

n n
y x x w

t t

 
     
 

 (5.44) 

        
2 2 2 2 2 2 2 2 2 2 2

g g 3 0 0 0 0 3 4 rel( ) ( ) ( ) ( ) ( ) ( ) ( )u y w u n t x u n t n t u x u x y u w  (5.45) 

5.6.3 Procedure with known influences 

Another procedure, appropriate when small random influences are present, is based on the 
approach 

2 2 2
2 ( )

n u n n
u n

m m

 
   or   /u n  (5.46) 

The symbol u  denotes here the two terms with 3m  in Equation (5.41), i.e. 

2 2

1

1 1
( )

3 3

m

i
i

m
u n n n

m m 


  

   . 

The first term, n , of Equation (5.46) corresponds to the numbers in  of pulses according to the 

Poisson law in the absence of random influences. These influences are described by the sec-
ond term, 2 2n , assuming an empirical relative standard deviation ϑ valid for all samples and 
countings and caused by these influences. This influence parameter ϑ can be calculated from 
the data of counting measurements of the reference samples by combining Equation (5.43) 
with Equation (5.46) 

2 2 2
r r r( ( ) )m u n n n     (5.47) 

Instead of the data from counting measurements of the reference samples, those for other 
samples can be used which were previously examined, not explicitly for reference purposes 
but under conditions similar to those of the reference samples. 

If 2 0   results, the approach and the data are not compatible. The number rm  of the refer-

ence samples should then be enlarged or 0   be set. Moreover, 0,2   should be obtained.  

NOTE The influence parameter ϑ is assumed to apply to both, the gross and the back-
ground measurements. 

Instead of Equation (5.43), the expressions 

2 2 2 2 2 2 2 2
1 g g g g 2 0 0 0 0( ) ( ) ( )     ( ) ( ) ( )u x n n m t u x n n m t      (5.48) 

now apply. The cases g 1m   and 0 1m   are permitted here. With 1 g g/x n t  and Equation 

(5.48), 2
1( )u x  is given as a function of 1x  by 

2 2 2
1 1 g 1 g( ) ( )u x x t x m   (5.49) 

With 3 1x   with 3( ) 0u x   and 4 0x   with 4( ) 0u x   it follows that 

2 2 2 2 2 2 2 2 2
g g g g 0 0 0 0 rel( ) ( ) ( ) ( ) ( ) ( )u y w n n m t n n m t y u w          (5.50) 
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5.7  Calculation of uncertainties in measurements according to the GUM S1  

After establishing the PDFs of all input quantities, a joint PDF ,0 ( )fX x a  has to be formed 

which in the case of independent input quantities is given as  

,0 ,01
( ) ( )

i

m

X i if f x aX x a    (5.51) 

A joint PDF has to be assigned to those iX  that are not independent and inserted in Equation 

(5.51) for the respective input quantities. 

The posterior PDF ,0( )Yf y a  is calculated from the joint PDF ,0 (x )Xf  a  using the model 

Equation  , 1,...,iY G X i n   and the so-called Markov Formula  

,0 ,0( ) ( ) ( ( )) dYf y f y G   




   Xa a   (5.52) 

The primary result is then calculated as  ,0E ( )Yy f y a  and its associated standard uncer-

tainty as  2
,0( ) Var ( )Yu y f y a .  

The best estimate is    ˆ E ( , ) E ( ) ( )Y Y Yy f y f y f y    a a    and its associated standard 

uncertainty    2 ˆ( ) Var ( , ) Var ( ) ( )Y Y Yu y f y f y f y    a a   . 

 

6  Characteristic limits according to ISO 11929 

6.1  The history of ISO 11929 

The decision problem dealt with in ISO 11929 arises from the fact that in nuclear radiation 
measurements, the radiation of a sample of radioactive material has to be measured in the 
presence of a natural background radiation. It is the same problem as faced in trace element 
analysis, where the concentration of an element, a compound or a radionuclide has to be de-
termined in the presence of an analytical blank. As a consequence of the natural background 
radiation, of analytical blanks and of measurement uncertainties the detection capability of a 
measurement is downward limited. 

There are three questions to be answered:  

 Is there a contribution from the sample among the counted events? 
 How large is the smallest true value of the measurand which can be detected with high 

reliability? 
 If a contribution of the sample has been observed, how large is the range of values of 

the measurand containing the true value with high probability? 
 

The three questions are answered by the concept of the characteristic limits: 
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 the decision threshold decides the question whether there is a contribution from the 
sample among the counted events. 

 the detection limit is the smallest true value of the measurand which can be detected 
with high reliability.  

 the limits of the coverage interval define an interval which contains the true value of 
the measurand with a pre-selected probability. 

 

The term “characteristic limits” is used in ISO 11929 to summarily denote the decision 
threshold, the detection limit and the limits of a coverage interval. ISO 11929 provides stipu-
lations for the calculation of characteristic limits and values, i.e. the decision threshold, the 
detection limit, the limits of coverage intervals and the best estimate and its associated stand-
ard uncertainty.  

The development of ISO 11929 started in the end of 1981 when a working group (AK SIG-
MA) of the German-Swiss Association for Radiation Protection (Deutsch-Schweizerischer 
Fachverband für Strahlenschutz e.V.) was established which should standardize the calcula-
tion of the characteristic limits. The work was based on concepts developed by Currie (1968), 
Nicholson (1963) and Altschuler und Pasternak (1963) who used statistical hypothesis testing 
of the equality of gross and background counting events. All these concepts made use of fre-
quentist statistics.  

It took until the year 1989 that the work of the AK SIGMA resulted in the publication of the 
first part of the German standard DIN 25482. In the year 1997 there were already 7 parts of 
DIN 25482 available, all using frequentist statistics and dealing exclusively with Type A un-
certainties (Table 1). 

Between 2000 and 2003 the Parts 10 – 13 of DIN 25482 were published which now were 
based on a Bayesian Theory of Uncertainty in Measurement (Weise and Wöger, 1992, 1993) 
and allowed to take into account all sources of uncertainty (Type A and Type B). A survey on 
the historical development of the standards based on Bayesian statistics is given in Table 2. 

In parallel to the work of the AK SIGMA, the concepts of DIN 25482 were used to develop 
the first parts of ISO 11929 since the mid of the 1990ties. This work was done in the Working 
Group 17 (Radioactivity Measurements) of ISO/TC85 (Nuclear Energy)/SC2 (Radiation Pro-
tection). Between 2000 and 2005 eight parts of ISO 11929 were published, the Parts 1 – 6 and 
8 being based on frequentist statistics and Part 7 on Bayesian statistics. To end this confusion 
and to get a consistent standard for the calculation of the characteristic limits, ISO 
11929:2010 was developed which combined all topics of the earlier parts. ISO 11929:2010 
was exclusively based on the GUM. 

 

Table 1: Out-dated ISO 11929 and DIN 25482 standards based on frequentist statistics. 

ISO 11929 DIN 25482  
Determination of detection limit and decision 
threshold for ionizing radiation measurements 

ISO 11929- 1:2000 DIN 25482-1:1989 
Fundamentals and application to counting meas-
urements without the influence of sample treat-
ment 

- 
DIN 25482-1  
Supplement:1992 

Examples for the application 
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ISO 11929 DIN 25482  
Determination of detection limit and decision 
threshold for ionizing radiation measurements 

- DIN 25482-2:1992 
Counting spectrometric measurements without the 
influence of sample treatment 

- 
DIN 25482-2  
Supplement:1992 

Examples for the application 

ISO 11929-2:2000 DIN 25482-6:1993 
Fundamentals and applications to counting meas-
urements with the influence of sample treatment 

- 
DIN 25482-6:1993  
Supplement:1998 

Examples for the application 

- DIN 25482-4:1996 
Counting alpha-spectrometric measurements 
without the influence of sample treatment 

ISO 11929-3:2000 DIN 25482-5:1993 
Fundamentals and application to counting meas-
urements by high resolution gamma spectrometry, 
without the influence of sample treatment 

- 
DIN 25482-5:1993  
Supplement:1997 

Examples for the application 

ISO 11929-4:2001 DIN 25482-3:1993 
Fundamentals and application to measurements by 
use of linear scale analogue ratemeters, without 
the influence of sample treatment 

ISO 11929-5:2005 - 
Fundamentals and Application to a Transient 
Measurement Mode 

ISO 11929-6:2005 DIN 25482-7:1997 
Fundamentals and application to measurements of 
aerosols and liquid effluents while running 

 

With ISO 11929:2010 the earlier versions, Parts 1 – 8, of ISO 11929 were withdrawn. Except 
for the earlier Part 7, they had been based on frequentist statistics and could not take into ac-
count type B uncertainties. ISO 11929:2010 was also adopted as DIN ISO 11929:2011 and 
the earlier standard DIN 25482 Parts 1 – 8 and 10 – 13 were withdrawn. DIN 25482 Parts 1 – 
8 had also been based on frequentist statistics.  

ISO 11929 makes use of a Bayesian theory of measurement uncertainty according to Weise 
and Wöger (1992, 1993, 1999). The concept of Bayesian characteristic limits was introduced 
by Weise (1997) and later extended to spectrometric measurements (Weise and Michel 1995). 
The theoretical background of ISO 11929:2010 was described in detail by Weise et al. (2004, 
2005, 2006). Since ISO 11929:2010 was dealing exclusively with measurement uncertainties 
as stipulated in the GUM (ISO 1993, JCGM 2008a). The publication of the GUM Supplement 
1, (JCGM 2008b) required an extension of the methodology of ISO 11929:2010 (ISO 2010) 
and consequently a revision of ISO 11929:2010. An extension of ISO 11929 to the methodol-
ogy of the GUM S1 was made by Weise et al. (2009) and material for the revision of ISO 
11929:2010 was collected and published (Weise et al. 2013). A particular problem of a 
Bayesian analysis of ratemeter measurements was solved by Weise (2004). 

Explanatory papers for ISO 11929 were published by Michel (2000, 2016, 2017, 2019) in-
cluding an application of ISO 11929:2010 to conformity assessments (Michel 2017; SSK 
2016). A description of the early historical development of ISO 11929 as well of its German 
predecessor DIN 25482 may be found elsewhere (Michel and Kirchhoff, 1999). 

 

Table 2: ISO 11929, DIN 25482, and DIN ISO 11929 standards based on Bayesian statistics. 
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ISO 11929 
DIN 25482 resp.  
DIN ISO 11929 

Determination of the detection limit and 
decision threshold for ionizing radiation 
measurements 

ISO 11929-7:2005 DIN 25482-10:2000 Fundamentals and general applications 

- DIN 25482-11 Measurements with albedo dosemeters  

ISO 11929-8:2005 DIN 25482-12 
Fundamentals and application to unfolding of 
spectrometric measurements without the influence 
of sample treatment 

- DIN 25482-13:2003 
Fundamentals and Application to a Transient 
Measurement Mode 

- 
DIN 25482-13:2003  
Supplement 1:2014 

Supplement 1: Examples 

ISO 11929:2010 DIN ISO 11929:2011 

Determination of the characteristic limits (deci-
sion threshold, detection limit and limits of the 
confidence interval) for measurements of  
ionizing radiation - Fundamentals and application 

- 
DIN ISO 11929:2011  
Supplement 1:2014 

Supplement 1: Examples 

ISO 11929 Parts 1 - 4 DIN ISO 11929-1 to -4 

Determination of the characteristic limits (de-
cision threshold, detection limit and limits of 
the coverage interval) for measurements of 
ionizing radiation - Fundamentals and applica-
tion 

ISO 11929-1:2019 DIN ISO 11929-1:2020 Elementary applications 

ISO 11929-2:2019 DIN ISO 11929-2:2020 Advanced applications 

ISO 11929-3:2019 DIN ISO 11929-3:2020 Applications to unfolding methods 

ISO 11929-4:2020 DIN ISO 11929-4:2021 Guidelines to applications 

EN ISO 11929-1:2021 
DIN EN ISO 11929-
1:2021 

Elementary applications 

EN ISO 11929-2:2021 
DIN EN ISO 11929-
2:2021 

Advanced applications 

EN ISO 11929-3:2021 
DIN EN ISO 11929-
3:2021 

Applications to unfolding methods 

EN ISO 11929-4 DIN EN ISO 11929-4 Guidelines to applications (in preparation) 

 

Though the history of the application of ISO 11929:2010 can be considered a success and the 
basics of this standard series remained unchanged, there were quite some needs to revise ISO 
11929:2010. The following items have been considered in the revision as necessary improve-
ments: 

- Fix for the problem of a not-existent detection limit by application of GUM S1. 
- Extension to general applicability of ISO 11929 to GUM Suppl. 1. 
- Correction of an error in the stipulations for random influences (Weise et al. 2013). 
- Correction of the wording for proper use of Bayesian terminology, e.g. “decision mak-

ing” instead of “hypothesis testing”, “coverage interval” instead of “confidence inter-
val”. 
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- Clarification of stipulations for assessments and documentation in order to prevent 
misuse of stipulations. 

- Extension of the standard to dosimetric measurements. 
- Allowance for the shortest coverage interval as an alternative to the probabilistically 

symmetric one. 
- Facilitation of the application of the standard by more explicit formulas, explanations 

and explicit examples. 
 

By the revision, ISO 11929 was divided into 4 parts, of which parts 1 to 3 were published in 
2019, the 4th part is presently under FDIS voting and hopefully, will be published in 2022. 
The first three parts of the standard were also published as a German DIN ISO standard in 
2020.  
 

- ISO 11929-1:2019 corresponds closely to the old ISO 11929:2010 and is exclusively 
based on the GUM.  

- ISO 11929-2:2019 covers the application of the GUM S1 and allows calculating the 
characteristic limits using Monte Carlo methods.  

- ISO 11929-3:2019 deals with unfolding methods according to the GUM. 

- ISO 11929-4 is an explanatory paper giving a lot of numerical examples. The German 
supplement to DIN ISO 11929:2010 will remain valid. Part 4 will be complementary 
to the DIN ISO supplement to DIN ISO 11929 Beiblatt 1:2010 (DIN 2014). 

In 2021, ISO 11929 became a European standard and the parts 1 to 3 were published as EN 
ISO and DIN EN ISO standards. Part 4 waits for some revision because of too many misprints 
and shall only afterwards become an European standard as well.   

 

6.2  The scope of ISO 11929 

ISO 11929 makes stipulations for the calculation of the primary result and its associated 
standard uncertainty, of the characteristic limits, the decision threshold, the detection limit, 
limits of coverage intervals, and the best estimate and its associated standard uncertainty.  

The primary result of a measurement and its associated standard uncertainty are calculated 
as expectation and square root of the variance of the posterior PDF ,0 ( )Yf y y , respectively. If 

the GUM methodology is used the primary result is obtained as point estimate by the Equa-
tion ( ; 1,..., )iy G x i n   and the standard uncertainty is calculated as described in chapter 5.4. 

The decision threshold *y  provides a decision rule whether or not the physical effect of in-
terest has been observed, i.e. 0y  . It is defined as the (1 ) -quantile of the likelihood 

,0 ( )Yf y y : 

 
*

*
,0( 0) ( 0) dY

y

P y y y f y y y 


       (6.1) 
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  is the preselected probability of a wrong decision in favor of the physical effect of interest 
if in reality it is absent. From the pure mathematical point of view,   is the probability of 
getting a measurement result which exceeds the decision threshold if there is no physical ef-
fect. The decision rule makes use of a quadratic loss function which is the only one satisfying 
the requirement for consistency (Weise et al. 2013). For all *y y  the probability of a correct 
decision in favor of the presence of the physical effect of interest exceeds that of a wrong de-
cision against its presence. 

The detection limit #y  is the smallest true value of the measurand that can be determined 
with a high reliability; i.e. with a preselected probability   of a wrong decision in favor of 
the absence of the physical effect of interest given the criterion of the decision threshold. It is 
defined as the -quantile of the likelihood #

,0 ( )Yf y y y : 

 

*

* # #
,0( ) ( ) d

y

YP y y y y f y y y y 


       (6.2) 

For graphical presentations of the concept of decision threshold and detection limit see chap-
ters 8 and 9. 

Both, the decision threshold and the detection limit are calculated via the predictive PDF 

,0 ( )Yf y y  describing the probability to obtain a primary measurement result y  given an as-

sumed true value y  of the measurand. If the GUM methodology is applied only the uncer-
tainty ( )u y   as a function of an assumed true value y  of the measurand is needed. It is giv-

en as the square root of the variance of ,0 ( )Yf y y :  ,0( ) Var ( )Yu y f y y   . 

The limits of the probabilistically symmetric coverage interval or alternatively of the 
shortest coverage interval define intervals that contain the true value of the measurand with 
a preselected probability (1 ) . The limits of the coverage intervals are calculated as suitable 

quantiles of the posterior ,( ) ( ) H( )0Y Yf y y C f y y y     . 

The best estimate ŷ  and its associated standard uncertainty ˆ( )u y , in contrast to the primary 
result y  and its associated standard uncertainty ( )u y , take into account the non-negativity of 
the measurand and are calculated as the mean and the square root of the variance of 

,0( ) ( ) H( )Y Yf y y C f y y y     . 

Though ISO 11929 is entitled “Determination of the characteristic limits (decision threshold, 
detection limit and limits of the coverage interval) for measurements of ionizing radiation – 
Fundamentals and application” the applicability of this standard extends beyond measure-
ments of ionizing radiation and can be practically applied to any measurement problem in 
which a background or blank quantity has to be subtracted from a gross measurement quanti-
ty. 

It has to be emphasized that there are two conceptual parts in the procedures according to ISO 
11929. The first one deals with the establishment of the model of evaluation and the calcula-
tion of the primary result and its standard uncertainty using the GUM or the GUM S1. The 
second part is dealing with the characteristic limits, i.e. the decision threshold, the detection 
limit, the limits of coverage intervals, and the best estimate and its associated standard uncer-
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tainty. The limits of the coverage intervals and the best estimate and its associated standard 
uncertainty go beyond the strict application of the GUM and the GUM S1 since they take into 
account of the non-negativity of the measurand.  

 

6.3  The methodology of ISO 11929-2:2019 

The methodology of ISO 11929 starts from a model of evaluation  

 ( , 1,..., )iY G X i n    (6.3) 

connecting the input quantities iX  mathematically to the measurand Y. It makes use of the 

Bayesian theory of measurement uncertainties as dealt with in chapter 5, in particular with the 
factorization of the posterior ( )Yf y y  according to  

 ,0 ,0( ) ( ) ( ) ( ) H( )Y Y Y Yf y y C f y y f y C f y y y           (6.4) 

ISO 11929-2:2019 is based on the GUM S1 approach. For a model of evaluation, 
( , 1,..., )iY G X i n   and a given set a  of information, first the PDFs ( )

iX i if x a  of the input 

quantities have to be stablished. This is done by making use of the PME or the Bayes Theo-
rem in combination with non-informative priors. The Markov Formula and Monte Carlo 
methods are used to propagate the distributions and to obtain the PDF ,0 ( )Yf y a . The fac-

torization according to Equation (6.4) is maintained. If additional prior information is availa-
ble it can be taken into account using the methodology of ISO 11929-2:2019. 

The available information is summarized in ISO DIS 11929-2:2019 by the symbol a . It com-
prises all information about the measurement problem and the values of the input quantities 
and the measurand available when the evaluation of a measurement is performed. From this 
information a  the PDFs ,0 ( )

iX i if x a  of the input quantities Xi have to be stablished ( ia  being 

the subsets of information available and relevant for iX ).  

The GUM S1 gives detailed advice how the PDFs have to be established. Special cases of 
obtaining PDFs ,0 ( )

iX i if x a  are dealt with in ISO DIS 11929-1:2019 Appendix A for repeated 

counting measurements with random influences and in ISO DIS 11929-2:2019 Appendix A 
for measurements with low count numbers.  

After establishing the PDFs of all input quantities, a joint PDF ,0 ( )f X x a  has to be formed 

which in case of independent input quantities is given as  

,0 ,01
( ) ( )

i

m

X i if f x aX x a    (6.5) 

A joint PDF has to be assigned to those iX  that are not independent and inserted in Equation 

(6.5) for the respective input quantities. 
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The posterior PDF ,0( )Yf y a  is calculated from the joint PDF ,0 ( )fX x a  using the model 

Equation  , 1,...,iY G X i n   by the so-called Markov Formula  

,0 ,0( ) ( ) ( ( )) dYf y f y G




   Xa ξ a ξ ξ   . (6.6) 

The GUM S1 recommends the application of Monte Carlo techniques to solve Equation 
(6.6) and to derive ,0 ( )Yf y a . Suitable numeric is described in detail elsewhere (Weise et al. 

2013). Using the Monte Carlo approach, M1,...,i n  Monte Carlo trials are performed for 

propagating the distributions by drawing sets 1, ,,...,i n ix x  from the PDFs 
iX i if x a,0 ( ) . For 

each of these sets, one calculates 1, ,( ,..., )i i n iy G x x . The vector  1,...,
MM ny yy , ordered 

ascendingly and afterwards assigning probabilities M/i n  to the iy  of My , is a discrete repre-

sentation of the distribution function of the posterior ,0 ,0( ) ( ) d
y

Y YF y f  


 


 a a  of Y .  

If the PDF ,0 ( )fX x a  is explicitly available, the integral of Equation (6.6) may also have an 

explicit solution. 

The decision threshold *y  is the (1-)-quantile of the predictive probability density function 

,0 ( 0)Yf y y  . Assuming a quadratic loss function, the decision threshold provides a decision 

rule for the decision of whether or not there is a contribution from the sample in a measure-
ment result. Consequently, one decides to conclude that a contribution of the sample is recog-

nized if *y y . The definition of the decision threshold is therefore *( 0)P y y y    . The 

probability of a wrong decision in favor of the physical effect equals a predefined value . 
With the decision rule provided by the decision threshold, it holds that the probability for de-

cisions in favor of the physical effect exceeds 50 % for all true values *y y ; see chapter 
8.1. 

The detection limit #y  is the smallest true value of the measurand which can be recognized 

with a high probability. Given a predefined probability  of a wrong decision based on the 
decision threshold in favor of there being no effect of the sample, the detection limit is de-
fined as the -quantile of the predictive probability density function #

,0 ( )Yf y y y . The defi-

nition of the detection limit is therefore * #( )P y y y y    . 

The limits of the probabilistically symmetric coverage interval ,y y  
   are the /2- and 

(1-/2)-quantiles of the posterior PDF ,0 ,0( ) ( ) ( ) ( ) H( )Y Y Y Yf y y C f y y f y C f y y y           

(Equation 6.4). The limits of the shortest coverage interval ,y y  
   also make use of the 

posterior PDF ( )Yf y y  according to Equation 6.6. See chapter 10. 
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The best estimate and its associated standard uncertainty are calculated as the mean and 
the square root of the variance of ,0 ,0( ) ( ) ( ) ( ) H( )Y Y Y Yf y y C f y y f y C f y y y          . See 

chapter 11. 

 

6.4 The methodology of ISO 11929-1:2019  

ISO 11929-1:2019 is based on the GUM approach and only makes use of the factorization of 

Equation (6.4) and of expectations and variances of suitable PDFs ,0( )
iX i if x x  and ,0( )Yf y y  

without specifying the underlying PDFs. Thus, ISO 11929-1:2019 is a special case of the 
methodology of ISO 11929-2:2019 and therefore is presented after the more general ISO 
11929-2. It is assumed that the available information a  consists only of the primary meas-
urement results xi of Xi and the standard uncertainties u(xi) associated with the xi and that the 
model of evaluation is sufficiently linear to allow for the application of the GUM. This has the 
consequence that the PDFs are Gaussian distributions so that explicit formulas for the charac-
teristic limits can be given; see chapters 7 to 11 for the formulas.  

 

6.5  UncertRadio – a software package for the application of ISO 11929 

There is software available for calculation of characteristic values according to ISO 11929 for 
radioactivity measurements: UncertRadio. It was developed by G. Kanisch (Kanisch 2015a, 
2015b). The software „UncertRadio“ enables the automated calculation of characteristic val-
ues of activity measurements according to ISO 11929 on computers with Windows operation 
System. These include the activity concentration or specific activity and its combined stand-
ard measurement uncertainty, an uncertainty budget and values of the decision threshold and 
the detection limit. The uncertainties of the single output values are calculated using numeri-
cal uncertainty propagation according to ISO GUM. 
 
UncertRadio can be used for a variety of applications from Alpha, Beta and Gamma meas-
urements, but also from dosimetry. It has the capability to derive the characteristic values for 
up to three radionuclides simultaneously, whose output quantity values, e.g. activity values, 
are dependent from each other due to the measurement. Therefore, it is especially suited for 
modern liquid scintillation measurement procedures of e.g. strontium isotopes. 
 
There are two main analytical approaches used within the software: 

- procedures without linear unfolding: numerically applied propagation of uncertainty 
values of input quantities , 

- procedures with linear unfolding: linear least squares procedures (e.g. for decay or 
build-up curves); 

Alternatively, an evaluation by Monte Carlo simulation may be used within both approaches. 
This represents the method of propagating whole distributions and is in advantage in the case 
of significant deviations from the normal distribution; see ISO GUM Supplements 1 and 2. 
 
Applying UncertRadio means that the user should be able to formulate the formulas used for 
the calculation of values of the output quantity. A special advantage is, however, that no par-
tial derivatives are to be supplied. For a better understanding of the course of the software and 
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of user-supplied formulas and functions an extensive bundle of application examples as pro-
ject files is included into the installation. 
 
Many of the application examples are from the working group "AK-SIGMA" of the “German-
Suisse Association for Radiation Protection”, from Measuring Instructions of the German Co-
ordinating Offices and from the literature. These examples including those of a German Na-
tional Supplement 1 of DIN ISO 11929 (2014) contributed to the validation of UncertRadio. 
 
The author is grateful for the feedback and new requirements of the user-community, espe-
cially from federal coordination centres and the laboratories of the German Federal States 
working according to AVV-IMIS on monitoring of environmental radioactivity, which signif-
icantly improved the quality and usability of UncertRadio. 
 
The actual version can be downloaded for free from https://www.thuenen.de/en/fi/fields‐of‐
activity/marine‐environment/coordination‐centre‐of‐radioactivity/uncertradio/. 
 
The download consists of one executable file, which combines all required components of the 
Software (help-files, short installation guide, and collection of validated example projects). 
Additionally, a brief instruction to use the software may be downloaded. The private or com-
mercial use of the software is free of charge. 
 
The program’s author is Günter Kanisch. Contact person for questions and suggestions is Dr. 
Marc-Oliver Aust from the “Federal co-ordinating office for fish and fishery products, crusta-
ceans, molluscs and marine algae” in the Thünen-Institute of Fisheries Ecology. 
 
Other software packages, including EXCEL in combination with e.g. Chrystal Ball, allow 
for calculating the characteristic limits and are commercially available.   

7  Uncertainty associated with an assumed true value of the 
measurand  

7.1  General aspects 

The uncertainty ( )u y   associated with an assumed true value y  of the measurand Y is calculat-

ed via the predictive PDF ,0 ( )Yf y y  by  ,0( ) Var ( )Yu y f y y   . ,0 ( )Yf y y  or ( )u y   are need-

ed for the calculation of the decision threshold (chapter 8) and the detection limit (chapter 9) 
on the basis of the GUM S1 or the GUM, respectively. 
 

7.2  Predictive PDF associated with an assumed true value of the measurand 

If GUM S1 is used, the following holds. For the provision and numerical calculation of the 
decision threshold in chapter 8 and of the detection limit in chapter 9, the standard uncertainty 
of the measurand is needed for assumed true values of the measurand. In ISO 11929-1, in 
which the GUM methodology is used, the standard uncertainty as a function of assumed true 
values of the measurand could be explicitly given. This is not possible if the GUM S1 is used, 
but standard uncertainties for individual assumed true values of the measurand can be deter-
mined in a way similar to ( )u y  on the basis of the GUM S1.  
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In the approach according to GUM S1 the standard uncertainty as a function of assumed true 
values of the measurand can be derived as approximation by repeated numerical calculations 
for assumed true values y  of the measurand resulting in probability distribution ( ')Yf y a  

with a modified set of information a  which takes into account the remaining information of 
a . To this end, the value of the gross input quantity 1x  has to be modified; see equation (5.39). 

The standard uncertainty for an assumed true value of the measurand is derived from the vari-
ance of the probability distribution ( ')Yf y a .  

For the calculation of the decision threshold and the detection limit, iterative methods have to 
be used. For each iteration step, a new probability distribution 

1 1 1( ', )Xf x xa  has to be estab-

lished with a modified value 1x  of the gross quantity 1X . Then, M1,...,i n  new Monte Carlo 

trials are performed by drawing sets 1, ,,...,i n ix x  from the probability distributions 

1 1 1( ', ), ( '), 2,..., )
iX X if x x f x i na a  . For each of these sets one again calculates 

1, ,( ,..., )i i n iy G x x . The new vector  ny y 
MM 1( ) ,...,y a  ordered ascendingly and afterwards 

assigning probabilities M/i n  to the iy  of M ( )y a  is a discrete representation of the distribu-

tion function 1 1( ', ) ( ', )d
y

Y YF y x f x 


 a a


  of Y .  

 

7.3  Uncertainty as a function of an assumed true value of the measurand 

For the provision and numerical calculation of the decision threshold in 8.2 and of the detec-
tion limit in 8.3, the standard uncertainty of the measurand is needed as a function ( )u y   of an 
assumed true value 0y >  of the measurand. This function shall be determined in a way simi-
lar to ( )u y  within the framework of the evaluation of the measurements by application of the 
GUM or GUM Supplement 1. In most cases, ( )u y   shall be formed as a positive square root of 

a variance function 2 ( )u y   calculated first. This function shall be defined, unique and continu-
ous for all 0y > , and shall not assume negative values. 

The function 2 ( )u y   is schematically shown in Fig. 17. Several cases are shown in this figure. 
In principle, this function can be determined experimentally from multiple measurements of a 
series of reference materials of different levels of the physical effect of interest. It is the char-
acteristics of a reference material that its value is assumed to represent the true value of the 
measurand. Such multiple measurement results are indicated by the circles in the left panel of 
Fig. 17. A particular point is 2 ( 0)u y   . For any model g 0( )y r r w    a measurement of the 

background 0r  and the evaluation of its associated uncertainty 0( )u r  are needed. If the true 

value of the measurand y  is zero one expects g 0r r  and consequently one obtains 
2 2

0(0) 2 ( )u u r w   . Thus, 2 (0)u  is always available.  

One may ask what the minimum requirements are to calculate ( )2u y   and to obtain the deci-
sion threshold and the detection limit. For the successful invention of a measurement method 
it is required that a measurement of the background and at least one successful measurement 
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of a sample with 0y   is performed and that the associated uncertainties 2 (0)u  and ( )u y  are 

calculated. Then, the function ( )2u y   can be approximated by interpolation using the Equation 
(7.1). 

  2 2 2( ) (0) (1 / ) ( ) /        u y u y y u y y y  (7.1) 

This case is shown in the right panel of Fig. 17. If more measurements are available, higher 
order interpolations can be used as described in detail in ISO 11929-1:2019 Appendix A.2.  

 

 

Fig. 17: Simple picture of 2 ( )u y   (upper panel) and of the interpolation equation (7.1) (lower 
panel). 

In most cases of models of the general form 
...

( )
...

6 8
1 2 3 4

5 7

x x
y x x x x

x x
     with 1 g g g/x r n t   

and 2 0 0 0/x r n t  , ( )u y   can be explicitly specified, provided that ( )1u x  is given as a func-

tion of 1x . Such cases are dealt with below.  
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7.4  Counting measurements  

ISO 11929-1:2019 covers the general model of evaluation  

 6 8
1 2 3 4

5 7

...
( )

...

x x
y x x x x

x x
    with 1 g g g/x r n t   and 2 0 0 0/x r n t   (7.2) 

In the case of the model, the standard uncertainty, 1( )u x , of the gross count rate 1 g ,X R  is 

given as a function of the estimate, 1 gx r  , either 1 gx t  or x n1 g  applies if the meas-

urement duration, gt  (time preselection), or, respectively, the number, gn , of recorded pulses 

(preselection of counts) is specified. 

In order to calculate 2 ( )u y  ,  the value y shall be formally replaced by y  in Equation (7.2). 

This allows the elimination of 1x  in the general case and, in particular, of 
gn  with time prese-

lection and of gt  with preselection of counts. This yields in the case according to Equa-

tion (7.3)  

 1 2 3 4x y w x x x    (7.3) 

with time preselection  

 g g 0 3 4( )n t y w r x x    . (7.4) 

Then, with 2 2
1 1 g g g( )u x x t n t   and by substituting gn  according to Equation (7.4) and with 

2
2 0 0( )u x r t , Equation (7.2) leads in the case of time preselection to 

 2 2 2 2 2 2 2
0 3 4 g 3 0 0 0 3 4 rel( ) ( ) ( ) ( ) ( )u y w y w r x x t x r t r u x u x y u w              (7.5) 

For the simple model 1 2( )y x x w    one obtains in the case of time preselection 

 2 2 2 2 0
rel

g 0 g 0

1 1
( ) ( )

ny
u y y u w w

t w t t t

  
            

    

With preselection of counts 

 g
g

0 3 4

n
t

y w r x x


 
 (7.6) 

is analogously obtained. Then, with 2 2
1 1 g g g( )u x x t n t   and by substituting gt  according to 

Equation (7.6) and with 2 2
2 0 0( )u x r n , Equation (7.2) leads in the case of preselection of 

counts to 

 2 2 2 2 2 2 2 2 2
0 3 4 g 3 0 0 0 3 4 rel( ) ( / ) ( ) ( ) ( )u y w y w r x x n x r n r u x u x y u w              . (7.7.) 
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If the standard uncertainty cannot be explicitly given as a function of an assumed true value of 
the measurand, an approximation by interpolation described in chapter 7.3 has to be applied.  

Preselection of counts is frequently chosen in order to economize the available time for meas-
urements. If in addition a maximum measurement time maxt  is set, it must be ensured that 

max 0 3 0 4/ ( / )gt n n x t x   . Otherwise, the evaluation changes the chosen model of evaluation 

and the decision threshold and the detection limit are wrongly calculated. 

If no explicit specification of ( )u y   is available, it is often sufficient to use the following ap-

proximations for the function ( ) u y , in particular, if the standard uncertainty 1( )u x  is not 

known as a function of 1x . A prerequisite is that measurement results 
jy  and associated 

standard uncertainties ( )ju y  calculated from previous measurements of the same kind, are 

already available ( 0,1,2, ...)j . The measurements shall be carried out on different samples 
with differing activities, but in other respects as far as possible under similar conditions. One 
of the measurements can be a background effect measurement or a blank measurement with 

0y   and, for instance, 0j  . Then, 0 0y   shall be set and 0(0) ( )u u y . The measurement 

currently carried out can be taken as a further measurement with 1j  .  

7.5  Counting measurements with random influences 

7.5.1  Procedure with unknown influences 

Assume that 2
1( )u x  is not given as a function of 1x . Therefore, 2 ( )u y   shall be determined as 

an approximation, for instance, according to Equation (7.1), where the current result y can be 
used as 1y . For this purpose and for the calculation of 2 (0)u , i.e. for 0y  , the missing 

2 2
g gn t  shall be replaced by 2 2

0 0n t , since both these values are then variance estimates of the 

same distribution of count rate values, independent of gt , 0t , gm  and 0m . 

It is often sufficient to use the approximations of Equations (7.1) for the function ( )u y  , in 

particular, if the standard uncertainty 1( )u x  is not known as a function of 1x . A prerequisite is 

that measurement results jy  and associated standard uncertainties ( )ju y  calculated according 

to chapter 5.6.2 from previous measurements of the same kind, are already available 
( 0,1,2, ...)j  . The measurements shall be carried out on different samples with differing ac-
tivities, but in other respects as far as possible under similar conditions. One of the measure-
ments can be a background effect measurement or a blank measurement with  0y  and, for 

instance 0j  . Then, 0 0y   shall be set and 0(0) ( )u u y . The measurement currently car-

ried out can be taken as a further measurement with 1j  . 

For an assumed true value of the measurand 0y   one expects g 0

g 0

n n

t t
  and obtains for the 

model according to Equation (7.2) with Equation (5.45) 

        
2 2 2 2 2 2 2 2 2 2

0 g 3 0 0 0 0 3 4(0) ( ) ( ) ( ) ( ) ( )u w u n t x u n t n t u x u x  (7.8) 
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7.5.2 Procedure with known influences 

In order to calculate  ( )u y , the result y is replaced by y  and Equation (7.2) is solved for 

1 g gx n t . This yields 1 0 0x y w n t  . The estimate 1x  determined in this way in the cur-

rent case, shall be substituted in Equation (5.48) and 2
1( )u x  from Equation (5.48). This finally 

leads to  ( )u y  

                          

  
2 2 2 2 22

2 2 20 0 0 0 0
rel 2 2

g g 0 g g 0 g g 0 0 0

2 1
( ) ( )

n n n n nyw
u y y u w w

m m t t m t t m t m t
 (7.9) 

7.5.3 Black box measurements 

Applying the GUM in ISO 11929-1:2019, one assumes in order to obtain the decision thresh-
old that g by y  and g bs s  will hold for a true value 0y   of Y. This yields 

  
         

  g2 2b
b

g g b b

1 11 1
( 0)

3 3

n n
u y s

n n n n
 (7.10) 

 

8  The decision threshold 

8.1   General aspects and the definition of the decision threshold 

The decision threshold provides a decision rule with given probability criteria whether or not 
a contribution of the sample has been observed taking into account the background measure-
ment and the uncertainty associated with it. 

The decision threshold (Fig. 18) is defined by the basic decision criterion for the presence or 
absence of a contribution of the sample by  

  
*

*
,0( 0) ( 0) dY

y

P y y y f y y y 


       (8.1) 

 is a preselected probability for the wrong decision to accept the existence of a contribution 
from the sample if in reality there is none. If a measured value y  exceeds the decision thresh-

old *y one decides that a contribution from the sample has been observed.  
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Fig. 18: The decision threshold. 

At this point it is somewhat obscure how to derive such a criterion or how to fix a decision 
threshold in ISO 11929:2010. The reason for both is that decisions are a matter of decision 
theory, e.g. (Berger, 1985). According to decision theory, decisions need a loss function. For a 
given set of information the optimal action to decide between two options a0 and a1 will be to 
accept option a0 if (and only if) the expected posterior loss of accepting is smaller than the 
expected posterior loss of rejecting the option a0 and accepting a1. Also the consequences of 
loss or gain can only be quantified by probabilities. But, the critical probability  for ac-
ceptance and rejection has to be chosen by humans weighting the importance of loss or gain.  

In metrology, only second-order loss functions, e.g. used to define uncertainty or in least 
squares fits including an uncertainty treatment, can meet – at least in a linear model approxi-
mation in the data range of interest – the requirement of consistency (Weise and Wöger 1999, 
2000). This choice goes deeply into the basic metrological requirements. Any uncertainty 
theory should meet at least the following six metrological requirements: (1) generality, (2) 
consistency (information conservation), (3) unique statistical basis, (4) possibility of a critical 
comparison of different measurement results of the same measurand, (5) protection against 
large possible measurement deviations, and (6) simplicity, transparency, practicability, and 
small computing effort. 

Weise and Wöger (1999, 2000) have shown that only quadratic functions such as in the least 
squares method satisfy this requirement for consistency. The PME and Bayes Theorem are 
also consistent when connected with the same preconditions. 

The decision threshold has to be calculated on the basis of the background or blank measure-
ment alone which give the information about ,0 ( 0)Yf y y  . For the decision threshold this is 

sufficient and no further information is needed. For the calculation of the detection limit some 
more information is required. For the calculation of ,0 ( )Yf y y  the expected uncertainties ( )u y   

for assumed true values y  of the measurand Y  have to be known. The required information 
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regards the standard uncertainty as a function of the true value y  of the measurand Y . 

( 0)u y    can be obtained from ,0 ( 0)Yf y y   resulting from a background or blank meas-

urement. For another assumed true value y  it is possible to experimentally determine the val-
ue of this function, e.g. by measurements of reference materials. ( )u y   can also be approxi-
mated by interpolation using the information about ( 0)u y    and a measurement result y  and 
its associated standard uncertainty ( )u y . In many cases of counting radiation measurements 

( )u y   can be explicitly calculated (see below). 

The decision threshold is not based on a frequentist hypothesis test testing the null hypothesis 

0 : 0H y   against the alternative hypothesis 1 : 0H y  . It has to be mentioned that in fre-
quentist statistics rejecting the null hypothesis does not imply accepting the alternative hy-
pothesis. This is only done with a decision theory using Bayesian probabilities and an appro-
priate loss function. Any decision bears the risk of being wrong. With the decision rule given 
by the decision threshold and with a preselected probability of 0,05  , the probability for a 
wrong decision in favor of an effect of the sample, if in reality there is none effect, is 

( 0) 0,05P y   . For any true value larger than the decision threshold the probability of mak-
ing the right decision (i.e. the decision in favor of an effect of the sample) is ( 0) 0,5P y   . 

A better estimation of the probabilities involved in the decision rule provided by the decision 
threshold is given by the Bayes factor; see e.g. Goodman (1999). The Bayes factor is a likeli-
hood ratio for two competing hypotheses, called models 1M  and 2M ,  given  data  D .  It is 

defined as  

 

1

1 11 2

22 2 1

2

( ) ( )

( ) ( )( ) ( )
( ) ( )( ) ( ) ( )

( )

P M D P D

P D M P M DP M P M
K

P M D P DP D M P M D P M

P M



   


 (8.2) 

Where 1( )P M D  and 2( )P M D  are the likelihoods of the two models given the data and 

1( )P M  and 2( )P M  are the respective priors. 

H. Jeffreys (1939) proposed the following scheme for judgements about the evidence provid-
ed by the Bayes factor. The reason of the scheme is as follows. If 1 2( ) ( )P D M P D M  and 

hence 1K   the data is more likely to arise in the case that model 1 applies than in the case 
that model 2 applies.  

K Evidence for M1 

< 1 Negative 

1 – 3,16 Barely worth mentioning 

3,16 – 10 Substantial 

10 to 31,6 Strong 

31,6 – 100 Very strong 

>100 Decisive  
 



78 
 

Assuming ignorance the probabilities 1 2( ) ( ) 0,5P M P M   should hold. Remember he prob-

ability assessment for throwing a coin. With a probability of 0,05   and  1 ( 0)M y   and 

2 ( 0)M y   one obtains for the Bayes factor 

 
*

*

( 0 ) ( 0) 0,5
3,98

( 0) 0,5( 0 )

P y y y P y
K

P yP y y y

    
     

   

 


 (8.3) 

which gives substantial evidence for the model 2 ( 0)M y  . 

Whereas the approach put forward here is correct in principle, there remains a caveat. It is not 
suited to test a point model ( 0y  ) against an interval model ( 0y  ). With the exception of 
very rare instances mentioned below, perfect zero does not exist in practice. It is impossible to 
claim that the true value is exactly zero rather than being very small but distinct from zero. It 
is also virtually impossible to decide by an experiment whether the true value is perfectly zero 
or, say, 1E-9. Consequently, without prior knowledge it will have to be taken as equally likely 
that the true value is 0, 1E-9, 2E-9, 3E-9 and so on. Therefore, in the absence of prior 
knowledge the probability of 0y   will always be far greater than the probability of y  being 
exactly zero. 

 

8.2   The decision threshold with uncertainties according to the GUM 

The GUM and ISO 11929-1 assume that only y  and its associated standard uncertainty ( )u y  
are available and that the measurand is non-negative. With this the respective PDFs 

,0 ( 0)Yf y y   and ,0 ( )Yf y y  are Gaussians and the following formula can be given for the 

decision threshold  

 *
1 (0)y k u     (8.4) 

with 1k   being the (1 ) -quantile of the standard normal distribution. The Equation (8.4) in 

combination with the formulas given in chapter 7.4 and 7.5 lead to the explicit formulas for 
the decision threshold.  

For a counting measurement with the general model of evaluation
...

( ) ( )
...

6 8
1 2 3 4 1 2 3 4

5 7

x x
y x x x x x x x x w

x x
         and for preselection of time the decision 

threshold according to Equation (7.5) is given by  

 * 2 2 2 2
1 1 0 3 4 g 3 0 0 0 3 4( 0) ( ) ( ) ( )y k u y k w r x x t x r t r u x u x             (8.5) 

For the simple and frequently used counting measurement with the model of evaluation 

1 2( )y x x w    and preselection of time the decision threshold is given by  

 *
1 1 0

g 0

1 1
( 0)y k u y k w r

t t  

 
         

 
   (8.6) 
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For a counting measurement with the model of evaluation according to Formula (5.39)

6 8
1 2 3 4 1 2 3 4

5 7

...
( ) ( )

...

x x
y x x x x x x x x w

x x
         and preselection of counts the decision 

threshold according to Equation (7.7) is given by  

 * 2 2 2 2 2 2
1 1 0 3 4 g 3 0 0 0 3 4( 0) ( ) ( ) ( )y k u y k w r x x n x r n r u x u x              (8.7) 

For counting measurements with unknown random influences with the model of evalua-

tion according to 
...

( ) ( )
...

6 8
1 2 3 4 1 2 3 4

5 7

x x
y x x x x x x x x w

x x
         with 1 g g 2 0 0;   x n t x n t   

the decision threshold according to Equation (7.8) is given by  

 * 2 2 2 2 2 2 2 2
1 1 0 g 3 0 0 0 0 3 4(0) ( ) ( ) ( ) ( ) ( )y k u k w u n t x u n t n t u x u x             (8.8) 

For counting measurements with known random influences with the model of evaluation 

6 8
1 2 3 4 1 2 3 4

5 7

...
( ) ( )

...

x x
y x x x x x x x x w

x x
         the decision threshold according to Equation 

(7.9) is given by  

 
 

 

       
 
 

 
2 2 2 2

* 2 0 0 0 0
1 1 2 2

g 0 g g 0 0 0

( 0)
n n n n

y k u y k w
m t t m t m t

 (8.9) 

For black box measurements with the model of evaluation g b( ) wy y y    with 

g

g g,
1g

1 n

i
i

y y
n 

  , 
b

b b,
1b

1 n

i
i

y y
n 

  , and 
b

1/2

2
b b, b

1b

1
( )

1

n

i
i

s y y
n 

 
   

  the decision threshold ac-

cording to Equation (7.10) is given by  

  
 

         
 

  g* b
1 1 b

g g b b

1 11 1
( 0)

3 3

n n
y k u y k w s

n n n n
 (8.10) 

The decision threshold does not depend on the uncertainty of the calibration factor. This is 
because – assuming a properly working instrument – a measurement can indicate that there is 
a contribution from the sample without knowing its value; i.e. independent from the calibra-
tion.  

 

8.3   The decision threshold with uncertainties according to the GUM S1 

The decision threshold *y  of the non-negative measurand quantifying the physical effect of 
interest, is the value of the estimator Y which allows the conclusion that the physical effect is 

present, if the primary measurement result y exceeds the decision threshold *y . If the result y 

is below the decision threshold *y  the result cannot be attributed to the physical effect, never-
theless it cannot be concluded that it is absent. If the physical effect is really absent, the prob-
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ability of taking the wrong decision, that the effect is present, is equal to the specified proba-
bility,  (probability of the wrong decision that it is present if it actually is absent). 

A determined primary measurement result y for the non-negative measurand suggests that the 
true value of the measurand is likely to differ from zero ( 0y  ) only if it is larger than the 
decision threshold 

*
,0( 0) ( ', 0) dY

y*

P y y y f y y y 


      a   (8.11) 

The integral according to Equation (8.11) has to be evaluated using Monte Carlo techniques. 
See Weise et al. (2009) for details of the suitable numeric. 

Using the Monte Carlo approach, the decision threshold *y  is calculated by iteration in form 
of a root-finding problem which can be solved by bisection methods, regula falsi or interpola-
tion. For each iteration step, a new probability distribution 

1,0 1 1( ', )Xf x xa  has to be estab-

lished with a modified value 1x  of the gross quantity 1X . Then, M1,...,i n  new Monte Carlo 

trials are performed by drawing sets 2, ,,...,i n ix x  from the probability distributions 

,0 ( ', 0)Yf y y a  . For each of these sets, one again calculates 1, ,( ,..., )i i n iy G x x . The new 

vector  
MM 1( ) ,..., ny y y a , ordered ascendingly and afterwards assigning cumulative proba-

bilities M/i n  to the iy  of M ( )y a


, is a discrete representation of the distribution function 

1 1( ', ) ( ', )d
y

Y YF y x f x 


 a a


 of Y . By iteration one searches for the function 

1 1( ', ) ( ', )d
y

Y YF y x f x 


 a a


  with  1E ( ', ) 0Yf y x a . This yields a particular value 1x  for 

which it is known that on average y  equals 0 or is at least very close to 0. From the respective 

 
MM 1( ) ,..., ny y y a  of the probability distribution, one calculates the probability 

*
M( ) /kP y y k n   by searching the largest index k  with *

ky y . The (1-)-quantile of this 

vector  
MM 1( ) ,..., ny y y a is the decision threshold *y .  

If the probability distribution ,0 ( ', 0)Yf y y a   is explicitly available, the integral according to 

Equation (8.11) can be evaluated by any suitable means. 

 

8.4   Assessment of a measurement 

The primary measurement result y  has to be compared with the decision threshold *y . If the 

primary measurement result y  exceeds the decision threshold *y , it is decided that the physi-
cal effect provided by the measurand is present, i.e. that a contribution from the sample has 
been recognized.  

If the result y is below the decision threshold *y , it is decided that the result cannot be at-
tributed to the physical effect. Nevertheless, it cannot be concluded that it is absent. If the 
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physical effect is really absent, the probability of taking the wrong decision, that the effect is 
present, is equal to the specified probability  . 

 

9  The detection limit 

9.1   General aspects and the definition of the detection limit 

The detection limit (Fig. 19) has to be set sufficiently high above the decision threshold to 
avoid an unduly high probability for the wrong decision that there is no contribution from the 
sample if in reality there is one. Given the criterion of the decision threshold, the detection 
limit is defined by 

 

*

* # #
,0( ) ( ) d

y

YP y y y y f y y y y 


       (9.1) 

 is the probability of the wrong decision that the effect of the sample is absent if in reality 
there is one.  

 

Fig. 19: Decision threshold *y  and detection limit #y  and the probabilities for wrong deci-
sions. 
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9.2   The detection limit with uncertainties according to the GUM 

If the GUM is used for the evaluation of uncertainties, the detection limit is given by 

  # * # #
1 1 1( ) (0) ( )y y k u y k u k u y              (9.2) 

with 1k   and 1k   being the (1 ) - and (1 ) -quantiles of the standard normal distribu-

tion, respectively. 

The detection limit #y  is the smallest true value of the measurand, for which, by applying the 
decision rule according to Chapter 8.2, the probability of the wrong decision that the physical 
effect is absent does not exceed the specified probability . In order to find out whether a 
measurement procedure is suitable for the measurement purpose, the detection limit #y  is 

compared with the specified guideline value ry  of the measurand.  

For the general model of evaluation 
...

( ) ( )
...

6 8
1 2 3 4 1 2 3 4

5 7

x x
y x x x x x x x x w

x x
         the detec-

tion limit #y  is obtained in the case of time preselection as the smallest solution of Equa-
tion (9.3) 

  2

# * # *
1 1

2 # 2 2 2 2 2 2 # 2
3 0 0 4 3 0 0 3 0 0 4 rel

( )

( / / ) / / ( ) / ( ) ( )g

y y k u y y k

w y w x n t x t x n t u x n t u x y u w

       

          


 (9.3) 

Equation (9.3) has a solution, which is the detection limit #y , if with preselection of time the 
following condition is satisfied 

 1 rel ( ) 1k u w    (9.4) 

For the simple and frequently used counting measurement with the model of evaluation 

1 2( )y x x w    and preselection of time the detection limit is implicitly given by  

 
#

# * # * #2 2 2 0
1 1 rel

g 0 g 0

1 1
( ) ( )

ny
y y k u y y k y u w w

t w t t t  
  
                 

  (9.5) 

For 1 1k k k     one obtains the explicit Equation for the detection limit 

 
* 2

g#
2 2

rel

2 ( ) /

1- ( )

y k w t
y

k u w

  



 (9.6) 

If 2 2
rel1- ( ) 0k u w  , i.e. if rel ( ) 1k u w  , the Equations (9.5) and (9.6) for the detection limit 

have no solution. This is a consequence of the fact that for large relative uncertainties of the 
calibration factor w the GUM approximation is no longer sufficient. In this case one has to 
proceed according to the GUM S1 and ISO 11929-2:2019. 
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The detection limit #y  is obtained in the case of preselection of counts as the smallest solu-
tion of Equations (9.7) 

# * # *
1 1

2 # 2 2 2 2 2 2 2 #2 2
0 3 0 4 g 3 0 0 0 3 0 4 rel

( )

( / / ) ( ) / ( ) ( )

y y k u y y k

w y w n x t x n x n t n u x t u x y u w

       

            


 (9.7) 

Equation (9.7) has a solution, which is the detection limit #y , if, with preselection of counts, 
the following condition is satisfied 

 
rel

2
1

g

1
( ) 1k u w

n     (9.8) 

A non-existence of the detection limit points to the fact that there are too large relative uncer-
tainties of the quantities 5X  to mX , summarily expressed by rel ( )u w , and that the GUM ap-

proximation is not sufficient. In such a case the solution is to obtain the necessary information 
to allow for an evaluation of the uncertainty on the basis of distributions according to GUM 
Supplement 1 and to proceed according to ISO 11929-2:2019.  

For counting measurements with unknown random influences with the model of evalua-

tion 
...

( ) ( )
...

6 8
1 2 3 4 1 2 3 4

5 7

x x
y x x x x x x x x w

x x
         with 1 g g 2 0 0;   x n t x n t   the detection 

limit #y  can only be obtained by applying the interpolation formula according to Equation 
(7.1). 

2 2 2
1 1 1( ) (0) (1 ) ( )u y u y y u y y y          (9.9) 

If the results 0y , 1y  and 2y  as well as the associated standard uncertainties 0( )u y , 1( )u y , 

and 2( )u y  from three measurements are available, the following bilinear interpolation can be 
used 

2 2 2 20 2 0 11 2
0 1 2

0 1 0 2 1 0 1 2 2 0 2 1

( )( ) ( )( )( )( )
( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( )

y y y y y y y yy y y y
u y u y u y u y

y y y y y y y y y y y y

    
     

     
      (9.10) 

If results from many similar measurements are given, the parabolic shape of the function 
2( )u y   can also be determined by an adjustment calculation. 

The linear interpolation according to Formula (7.1) leads to the approximation 

      # 2 2 2 2
1 1( ) (0)y a a k k u  (9.11) 

with 

  2 2 2
1 1 1 1

1
(0) ( ( ) (0)

2
a k u k y u y u          (9.12) 
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For counting measurements with known random influences with the model of evaluation 

6 8
1 2 3 4 1 2 3 4

5 7

...
( ) ( )

...

x x
y x x x x x x x x w

x x
         the detection limit is given with the help of 

equation (7.9) implicitly by  

2 2 2 2 22 #
# * #2 2 20 0 0 0 0

1 rel 2 2
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n n n n ny w
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  



     
                     

 (9.13) 

For black box measurements with the model of evaluation   g b( ) wy y y with 
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  the detection limit #y  can 

only be obtained by applying the interpolation formula according to Equation (7.1) as de-
scribed above for counting measurements with unknown random influences. 

 

9.3   The detection limit with uncertainties according to the GUM S1 

The detection limit #y  is the smallest true value of the measurand, for which, by applying the 
decision rule according to Chapter 8.2, the probability of the wrong decision, that the physical 
effect is absent if it is present, does not exceed the specified probability  . 

In order to find out whether a measurement procedure is suitable for the measurement pur-
pose, the detection limit #y  is compared with the specified guideline value ry  of the measur-

and. The detection limit #y  is the smallest true value of the measurand which can be detected 

with the measurement procedure used. The detection limit #y  is obtained as the smallest solu-
tion of Equation (9.14) 

 # #
,0( ) ( ', ) d

y*

YP y y* y y f y y y y 


      a   (9.14) 

Using the Monte Carlo approach, the decision threshold *y  is calculated by iteration in form 
of a root-finding problem which can be solved by bisection methods, regula falsi or interpola-
tion. For each iteration step, a new probability distributions 

1 1 1( ', )Xf x x a  has to be established 

with a modified value 1x  of the gross quantity 1X . Then, ,..., M1i n  new Monte Carlo trials 

are performed by drawing sets 1, ,,...,i n ix x  from the probability distributions 

1 1 1( ', ), ( '), 2,...,
iX X if x x f x i n a a . For each of these sets, one again calculates 

1, ,( ,..., )i i n iy G x x . The new vector  
MM 1( ) ,..., ny y y a ordered ascendingly and to whose 

elements iy  afterwards cumulative probabilities M/i n  are assigned is a discrete representa-

tion of the distribution function 1 1( ', ) ( ', ) d
y

Y YF y x f x 


 


 a a  of Y . From this new 

 
MM 1( ) ,..., ny y y a , one calculates the probability *( )iP y y . This procedure is repeated 
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until the condition *( ) 0iP y y     is met and one obtains a vector  
MM 1( ) ,..., ny y y a  

which fulfils this condition. The arithmetic mean of this vector  
MM 1( ) ,..., ny y y a is the 

detection limit #y .  

If the probability distribution ,0 ( )Yf y y   is explicitly available, the integral according to Equa-

tion (9.14) can be evaluated by any suitable mathematical means. 

 

9.4   Assessment of a measurement procedure 

The decision on whether or not a measurement procedure to be applied sufficiently satisfies 
the requirements regarding the detection of the physical effect quantified by the measurand is 
made by comparing the detection limit #y  with the specified guideline value ry . If #

ry y , 

the measurement procedure is not suitable for the intended measurement purpose with respect 
to the requirements.  

To improve the situation in the case of y y#
r , it can often be sufficient to choose longer 

measurement durations or to preselect more counts of the measurement procedure. This re-
duces the detection limit. 

Note that, occasionally, it can happen that a primary measurement result is larger than the 
decision threshold, i.e. y y* , and thus an effect of the sample is recognized, but the detec-

tion limit is larger than the specified guideline, i.e. #
ry y . This is, for instance, the case if 

due to particular circumstances the background counting rate is too high and at the same time 
the contribution from the sample is also high. If the primary measurement result y  and its 
associated standard uncertainty ( )u y  conform to the measurement objective the result can be 
accepted although formally the criterion of the detection limit in comparison with the guide-
line value is not fulfilled.  

If Equations (9.3) or (9.5) have no solution #y  the GUM approximation, which provides a 
basis for Part 1 of ISO 11929:2019, is not sufficient to evaluate the measurement uncertain-
ties. In this case the GUM S1 has to be used for the evaluation of the uncertainties and the 
characteristic limits can be obtained as stipulated in ISO 11929-2:2019. 

It is important to note that frequently the detection limit is used in the wrong way, i.e. that 
the detection limit is compared with the primary measurement result and used to answer the 
question whether or not a contribution from the sample has been recognized. This is funda-
mentally wrong. The decision threshold has to be compared with the primary measurement 
result to decide this question. The detection limit is exclusively meant to characterize the de-
tectability or sensitivity of a measurement procedure.  
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10  The limits of coverage intervals  

10.1   General aspects and the definition of coverage intervals 

Coverage intervals are frequently used in metrology. The limits of a coverage interval ,y y 

define an interval [ , ]y y   which contains the true value y  of the measurand Ywith a pre-

selected probability (1 – ).  

 ( , ) ( , ) d 1
y

Y

y

P y y y y f y y y       




     (10.1) 

Frequently, the probabilistically symmetric coverage interval is used with the additional con-
ditions 

 

( , ) ( , ) d / 2

( , ) ( , ) d / 2

y

Y

Y

y

P y y y f y y y

P y y y f y y y









    

    













  

  
  (10.2) 

Note that the definition of a coverage interval is not unique and that different types of cover-
age interval can be defined for the same probability (1 – ). For example, the shortest cover-
age interval [ , ]y y   can be used alternatively 

 ( ) ( , )d 1  with min
y

Y

y

P y y y y f y y y y y




              (10.3) 

See Weise et al. (2013) for detailed formulas in the case of the GUM approximation. For the 
general case of multiple output quantities see the GUM S2. 

The term coverage interval which occasionally also is called credible interval has to be distin-
guished from the term confidence interval used in frequentist statistics since the meanings of 
the two terms are different. The coverage interval contains the true value y  of the measurand 

Y  with a pre-selected probability (1 – ). The confidence interval is an interval in which the 
result of a new experiment is expected with the probability (1 – ) given a true value y of the 
measurand Y . These two definitions make quite some difference. 

 

10.2   Coverage intervals according to the GUM 

With a primary measurement result y of the measurand and the standard uncertainty ( )u y  

associated with y , the lower limit of the probabilistically symmetric coverage interval y  and 

the upper limit of the probabilistically symmetric coverage interval y  are calculated by 

 ( )py y k u y    with (1 2)p      (10.4) 
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 ( )qy y k u y    with 1 2q      (10.5) 

where 

  
/ ( ) 21

exp( )d / ( )
22

y u y
v

v y u y
π




     (10.6) 

For the distribution function ( )t  of the standard normal distribution and for its inversion, 

pk t  for ( ) t p  see ISO 11929-1:2019 (ISO 2019a). 

In general, the limits of the probabilistically symmetric coverage interval are located nei-
ther symmetrical to y, nor to the best estimate ŷ  but the probabilities of the measurand being 

smaller than y  or larger than y  both equal 2 . The relations 0 y y    apply. 

1   may be set if 4 ( )y u y> . In this case, the following approximations symmetrical to y 
apply  

 1 /2 ( )y y k u y    and 1 /2 ( )y y k u y    (10.7) 

and the result may be expressed as 1 /2 ( )y k u y  . See Fig. 20 for an example. 

 

Fig. 20: Example of a probabilistically symmetric coverage interval. The shaded area repre-
sents the truncated Gaussian distribution. 

As described in detail by Weise et al (2013), the lower limit of the shortest coverage interval 
y  and the upper limit of the shortest coverage interval y  are calculated from a primary 
measurement result y of the measurand and the standard uncertainty ( )u y  associated with y  
either by  

 , ( ) (1 (1 )) / 2py y y k u y p            (10.8) 

or if 0y    
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 0 ( ) 1qy y y k u y q           (10.9) 

with   given by Equation (10.6). The relations 0 y y    apply and the approximation of 
Equation (10.7) is valid.  

Fig. 21 gives examples of the probabilistically symmetric and the shortest coverage interval 
for a case with a large uncertainty of the primary measurement result.  

 

 

Fig. 21: Example of a probabilistically symmetric coverage interval (left) and a shortest cov-
erage interval (right). The shaded areas represent the truncated Gaussian distributions.  

 

10.3   Coverage intervals according to the GUM S1 

The probabilistically symmetric coverage interval (Fig. 21) includes for a result y of a meas-

urement, which exceeds the decision threshold *y , the true value of the measurand with a 

probability 1–. It is enclosed by the lower and upper limit of the symmetric coverage inter-

val, respectively y  and y , derived as (1 2) -quantiles of the probability distribution 

( )Yf y a  of the true value given the experimental result and the prior knowledge that the 

measurand is non-negative. They are calculated as the upper and lower 2  quantile of the 
posterior probability distribution which takes into account that the measurand is non-negative 
(Equation (10.10)) 

( , 0)d / 2
y

Yf Y  


 


a  (10.10) 

( , 0) d / 2Y

y

f Y  


  a


 (10.11) 
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Using the Monte Carlo approach, the limits of the probabilistically symmetric coverage inter-
val y  and y  are the  1 /2q   quantiles of the probability distribution ( )Yf y a  represented by 

the vector  
MM 1,..., ny yy  taking into account that the measurand is non-negative. These 

quantiles can be conveniently calculated from the vector  
MM 1,..., ny yy  by searching the 

values 
1ky y   and 

2ky y   with the conditions 0iy  , 1 M,1/ / 2k n   and 

2 M,1/ 1 / 2k n   ; M,1n  is the number of 0iy  . 

If the probability distribution ( )Yf y a  is explicitly available the quantiles according to Equa-

tion (10.2) can be evaluated by any suitable means.  

 

11  The best estimate and its associated standard uncertainty 

11.1  Definition of the best estimate and its associated standard uncertainty 

In the example of Fig. (21) the following holds: If the relative standard uncertainty associated 
with the measurement result exceeds 25 %, a substantial part of the PDF ,0 ( )Yf y y  will ex-

tend to negative values y  which is physically not meaningful since the quantity Y  is non-

negative. The primary measurement result y , and the expectation of ,0 ( )Yf y y , may be nega-

tive. Taking, however, into account the prior knowledge that the quantity Y  is non-negative, 
as expressed by the Heaviside function H( )y , the best estimate and its associated standard 
uncertainty can be calculated by 

 

,0

ˆ E( ( , 0)) ( , 0) d

( ) H( ) d

Y Y

Y

y f y y Y y f y y Y y

y C f y y y y









    

   





   

   
 (11.1) 

 

2 2

2
,0

ˆ ˆ( ) Var( ( , 0)) ( ) ( , 0) d

ˆ( ) ( ) H( ) d

Y Y

Y

u y f y y Y y y f y y Y y

y y C f y y y y









     

    





   

   
 (11.2) 

The PDF ,0 ( ) H( )YC f y y y    with the normalisation constant C  is the posterior PDF of the 

complete evaluation of the measurement. 

 

11.1  The best estimates according to the GUM  

If the primary measurement result y  exceeds the decision threshold *y  also the best estimate 
ŷ  and its associated uncertainty ˆ( )u y  can be calculated. In contrast to the primary result y  
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and its associated uncertainty ( )u y  the best estimate ŷ  and its associated uncertainty ˆ( )u y  
take into account that the measurand is non-negative. 

If the GUM is used for the evaluation of the uncertainties, the best estimate and its associated 
uncertainty are calculated by 

 2 2( ) exp 2 ( )
ˆ

2

u y y u y
y y

 

     
 

 and 2ˆ ˆ ˆ( ) ( ) ( )u y u y y y y    (11.3) 

For 4 ( )y u y , the approximations ŷ y  and ˆ( ) ( )u y u y  are sufficient and a separate calcu-
lation of the best estimate ŷ  and its associated uncertainty ˆ( )u y  is not necessary. 

The relations ˆ0 y y y y y y         as well as ˆ( ) ( )u y u y  and ˆ ˆ( )u y y  apply. 
Moreover, for 4 ( )y u y , the approximations 

ˆ ˆ ;  ( ) ( )y y u y u y   (11.4) 

are sufficient. 

If the best estimate ŷ  and its associated standard uncertainty ˆ( )u y  are calculated, the record-
ing of the primary measurement result y and its associated standard uncertainty ( )u y  may be 
omitted. 

If the decision rule defined by the decision threshold is not used and if y y* , the best esti-
mate ŷ  and its standard uncertainty ˆ( )u y  can be calculated anyway. 

 

11.2   The best estimates according to the GUM S1 

The determined primary measurement result y of the measurand shall be compared with the 
decision threshold y* . If y y* , the physical effect quantified by the measurand is recog-
nized as present. Otherwise, it is decided to conclude that the effect is absent. 

If y y*  the best estimate ŷ  of the measurand and its associated standard uncertainty ˆ( )u y  
are given by 

ˆ E( ( , 0)) ( , 0) dY Yy f y Y f Y  




    a a  (11.5) 

2 2ˆ ˆ( ) Var( ( , 0) ( ) ( , 0) dY Yu y f y Y y f Y  




      a a . (11.6) 

If the uncertainties were evaluated according to the ISO/IEC Guide 98-3-1, the best estimate 
and its associated standard uncertainty have to be determined from Monte Carlo calculations 
and to be calculated by explicitly solving the integrals of Equations (11.5) and (11.6). 
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If the probability distribution ,0( ) H( )YC f y y y    is explicitly available the integrals accord-

ing to Equations (11.5) and (11.6) can be evaluated by any suitable means. 

The best estimate and its associated standard uncertainty are independent of the type of cover-
age interval used. 

If the best estimate ŷ  and its standard uncertainty ˆ( )u y  are calculated, the recording of the 
primary measurement result y and its standard uncertainty ( )u y  can be omitted. 

Using the Monte Carlo approach for the calculation of the best estimate and its associated 
uncertainty as well as for the limits of the coverage intervals, the original set 

 
MM 1,..., ny yy  representing the distribution function ( ) ( )d

y

Y YF y f  


 a a


  according to 

section 6.3, is used considering the condition that the measurand is non-negative. The best 
estimate and its associated standard uncertainty are then calculated as the arithmetic mean and 

the standard deviation of the 0iy  . 

 

12 Conformity with requirements 

12.1  General aspects 

This chapter extends a previous paper on “Measuring, Estimating, and Deciding under Uncer-
tainty” (Michel 2016) with respect to the problem of conformity assessments based on an ac-
tual recommendation (SSK 2016) of the German Commission on Radiological Protection 
(SSK; www.ssk.de); see also Michel (2017, 2019).  

The simplest decision problem is to decide the question whether or not two measurement re-
sults conform to each other. As described by Weise and Wöger (1994) the decision can be 
made by the criterion for conformity 

 2 2
1 2 1 2 1 2( ) ( ) ( )y y u y y u y u y         (12.1) 

However, these authors correctly just state that the factor  which is representing a probability 

of conformity might be in the range 1 to 3, with 2   being the most favorable from a 

Bayesian viewpoint. The decision about the choice of  remains a task for the user. 

The JCGM also made recommendations for assessments of conformity with requirements 
taking into account measurement uncertainties (JCGM 2012b). The German Commission on 
Radiological Protection (SSK) has used the JCGM 106 (JCGM 2012b) recommendation to 
give explicit advice how to assess conformity with requirements in ionizing radiation meas-
urements for the purpose of radiological protection (SSK 2016). 
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12.2  Tolerance and acceptance intervals 

Requirements for technical testing result from safety regulations according to the state of sci-
ence and technology and from legal limits. Such requirements can be defined for various pa-
rameters (measurands) in the form of one- or two-sided limited tolerance intervals  L U,T T  

(Fig. 22).  

 

Fig. 22: Two-sided tolerance interval  L U,T T  for the true value of the measurand y  and ac-

ceptance interval  L U,A A  for measurement results y. 

For ease of practical application also an acceptance interval  L U,A A  may be defined in a way 

that one decides in favor of conformity with the requirement set by  L U,T T  independent of 

the measurement uncertainty if the measured value lies within the acceptance interval 

 L U,A A . Consequently, the acceptance interval lies inside the tolerance interval and is short-

er than the former and will be located asymmetrically relative to the tolerance interval (Fig. 
22). Setting the limits of an acceptance interval needs the knowledge of the standard uncer-
tainty associated with a measurement result as a function of the measurement result. Fig. 22 
gives a graphical representation of the concepts of the tolerance and acceptance intervals tak-
ing a two-sided tolerance interval as an example. 

A proof of conformity is then based on measurements, the results of which have uncertainties 
associated with them and which have to be taken into account in the assessment. The uncer-
tainties referred to are understood as standard uncertainties u(y) according to the GUM or 
GUM S1 associated with the measurement result y. A decision in favor of conformity with the 
requirement is made if the true value of the measurand lies within the tolerance interval with a 
preselected probability. With the concept of measurement uncertainties according to the GUM 
and GUM S1 decision rules can be derived by means of the limits of the probabilistically 
symmetric coverage interval of the PDF ( , )Yf y y  .  

A requirement is fulfilled, i.e. the measurement result conforms to the requirement,  



93 
 

1. if – in case of a one-sided downward tolerance interval  L,T   – the lower limit y  of the 

probabilistically symmetric coverage interval ,y y  
   for the coverage probability 90 % 

is larger than the limit of the tolerance interval LT ; 

2. if – in case of a one-sided upward limited tolerance interval U0,T   – the upper limit y  

of the probabilistically symmetric coverage interval ,y y 
 
   for the coverage probability 

90 % is smaller than the limit of the tolerance interval UT ; 

3. if – in case of a two-sided tolerance interval  L U,T T  – the probabilistically symmetric 

coverage interval ,y y  
   for the coverage probability 95 % lies within the tolerance in-

terval L U,T T   .  

If the GUM is used for the quantification of measurement uncertainties, the limits of the cov-
erage interval can be calculated by means of the standard measurement uncertainties and 
quantiles of the standard normal distribution as stipulated in ISO 11929-1:2019 and described 
in chapter 5.3. If the GUM S1 is applied, numerical procedures are needed for the calculation 
of the limits of the coverage interval.  

If requirements are stipulated by definition of a one- or two-sided tolerance interval, it is de-
manded that the true value of the measurand lies in the tolerance interval. Since the true value 
of the measurand is unknown and unknowable only probability statements can be made about 
it taking into account the measurement uncertainty.  

Since only probability statements can be made about the true value of a measurand, there is 
the possibility to wrongly decide on the conformity with requirements. While the scientific 
judgement about a measurement objective can only give boundary conditions about an ac-
ceptable or tolerable probability for a wrong decision, the setting of this probability can only 
be performed by the regulator. It is the result of societal agreement.  

The German Commission on Radiological Protection (SSK), which is consulting the German 
Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety, 
recommended setting the probability for a correct decision in favor of conformity with re-
quirements to 95 %. Consequently, the probability for a wrong decision in favor of conformi-
ty with a requirement is 5 %. The latter value of 5 % is frequently cited in international stand-
ards. Given the limited possibility to calculate reliably very small percentiles of an estimated 
PDF, the setting of 5 % for a wrong decision appears to be meaningful and justified. 

 

12.3  Conformity with a tolerance interval 

If the requirement is specified by a one-sided upward limited tolerance interval  U0,T  with an 

upper limit UT  below which the true value of the measurand shall lie with a high probability, 

one shall decide in favor of conformity if the upper limit of the probabilistically symmetric 
coverage interval for the coverage probability of 90 % is smaller than the limit UT   

 U( , ( )) 0, 05P y T y u y    (12.2) 
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If the GUM is used for quantifying the measurement uncertainty and if the relative measure-
ment uncertainty is smaller than 25 % the condition for conformity reads 

 U1,65 ( )y u y T    (12.3) 

For larger relative measurement uncertainties the limits of the coverage interval shall be cal-
culated according to ISO 11929-2:2019 as described in Equation (12.4). 

If the requirement is specified by a one-sided downward limited tolerance interval  L,T   

with a lower limit LT  above which the true value of the measurand shall lie with a high prob-

ability, one shall decide in favor of conformity if the lower limit of the probabilistically sym-
metric coverage interval for the coverage probability of 90 % is smaller than the limit LT   

 L( , ( )) 0,05P y T y u y    (12.4) 

If the GUM is used for quantifying the measurement uncertainty and if the relative measure-
ment uncertainty is smaller than 25 % the condition for conformity reads  

 L1,65 ( )y u y T    (12.5) 

For larger relative measurement uncertainties the limits of the coverage interval shall be cal-
culated according to ISO 11929-2:2019 as described in Equation (12.4). 

As an explanation of the rules given by Equations (12.2) to (12.5), Fig. 23 shows the extreme 
cases by which it is ensured that the coverage probability of 90 % fixes the probability of a 
correct decision in favor of conformity with the requirement at 95 % and limits that for a 
wrong decision at 5 %.  

The use of a coverage probability of only 90 % in the case of a probabilistically symmetric 
coverage interval results from the fact that just one side of the distribution has the chance that 
the true value of the measurand lies above respectively below the limits of the tolerance inter-
val LT  respectively UT . The other side of the distribution covers also outside of the coverage 

interval true values which conform to the requirement. 

So, the factor 1,65 in Equation (12.5) is the one-sided quantile of the standard normal distri-
bution for a probability of 5 %. It is sufficient here since the tolerance interval is just one-
sided. This is different for a two-sided tolerance interval, where the two-sided quantile of the 
standard normal distribution for a probability of 5 % has to be used. The latter quantile two 
sided quantile is 1,96 (Equation 12.7). See figure 9 in chapter 4.2 for an explanation of the 
different quantiles.  

If requirements are defined in the regulations via a tolerance interval no further requirements 
regarding permissible magnitude of the measurement uncertainties are necessary.  

If the requirement is specified by a two-sided tolerance interval  L U,T T  in which the true 

value of the measurand shall lie with a high probability, one shall decide in favor of conformi-
ty if the probabilistically symmetric coverage interval for the coverage probability of 95 % 
lies in the tolerance interval 
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 L U( , ( )) 0,05P y T y T y u y       (12.6) 

If the GUM is used for quantifying the measurement uncertainty and if the relative measure-
ment uncertainty is smaller than 25 % the condition for conformity reads  

 L1,96 ( )y u y T    and U1,96 ( )y u y T    (12.7) 

For larger relative measurement uncertainties the limits of the coverage interval shall be cal-
culated according to ISO 11929-2:2019 as described in Equation (12.6). 

 

Fig. 23: Extreme cases of one-sided tolerance intervals. For one-sided tolerance intervals a 
coverage probability of 90 % for the probabilistically symmetric coverage interval is suffi-
cient in order to limit the probability of wrong decisions in favor of conformity with a re-

quirement to 5 %. 

 

 

Fig. 24: Extreme case of a two-sided tolerance interval which makes it obligatory to apply a 
coverage probability of 95 %. In this extreme case, the uncertainty is so large that the 

probabilistically symmetric coverage interval for the coverage probability of 95 % completely 
fills the tolerance interval. 

 

The setting of a coverage probability of 95 % is conservative and limits for any measurement 
relative uncertainty the probability of a wrong decision in favor of conformity with the 
requirement to 5 %. This is exemplified for a limiting case in Fig. 24, which shows the case of 
maximum possible standard uncertainty and the therefrom resulting demand for a coverage 
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probability of 95 %. A measurement procedure with a larger measurement uncertainty is not 
suitable to proof the conformity with the requirement.  

The rules stated in chapter 12.3 are depicted in Fig. 25.  

 

Fig. 25: Assessment of conformity with a requirement for a one-sided upward limited toler-
ance interval (A), for a one-sided downward limited tolerance interval (B), for a two-sided 

tolerance interval (C).  

 

12.4  Acceptance interval inside a tolerance interval 

The specification of an acceptance interval for a one-sided or two-sided tolerance interval 
requires the knowledge of the measurement uncertainty as a function of the measurement re-
sult and a sufficient reproducibility of the measurements and the measurement uncertainties.  

For a one-sided downward limited tolerance interval  L,T   only the lower limit of the ac-

ceptance interval is needed. The acceptance interval  L,A   is then given by the implicit 

Equation 
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 L L L( , ( )) 0,05P y T y A u y A     (12.8) 

If the GUM is used for quantifying the measurement uncertainty and if the relative measure-
ment uncertainty is smaller than 25 % the condition for the lower limit LT  of the acceptance 

interval reads (see Fig. 26)  

 L L L1,65 ( )A T u y A     (12.9) 

For a one-sided upward limited tolerance interval  U0,T  only the upper limit UA  of the ac-

ceptance interval is needed. The acceptance interval U0, A    is then given by the implicit 

Equations  

 U U U( , ( )) 0,05P y T y K u y K     (12.10) 

If the GUM is used for the quantifying the measurement uncertainty and if the relative meas-
urement uncertainty is smaller than 25 % the condition for the upper limit of the acceptance 
interval reads (see Fig. 26)  

 U U U1,65 ( )A T u y A     (12.11) 

For larger relative measurement uncertainties the limits of the coverage interval shall be cal-
culated according to ISO 11929-2:2019 (ISO 2019). 

For a two-sided tolerance interval  L U,T T  both the lower and the upper limit of the ac-

ceptance interval are needed. The acceptance interval  L U,A A  is then given by the implicit 

Equations 

L L L( , ( )) 0,025P y T y A u y A     and U U U( , ( )) 0,025P y T y A u y A     (12.12) 

If the GUM is used for quantifying the measurement uncertainty and if the relative measure-
ment uncertainty is smaller than 25 % the condition reads (Fig. 27) 

 L L L1,96 ( )A T u y A     and U U U1,96 ( )A T u y A     (12.13) 

For larger relative measurement uncertainties the limits of the coverage interval shall be cal-
culated according to ISO 11929-2:2019. 
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Fig. 26: Schematic diagram to explain the stipulations regarding limits of a acceptance inter-
val for a one-sided downward limited (left) respectively upward limited (right) tolerance in-

terval. 

 

Fig. 27: Schematic diagram to explain the specifications for an acceptance interval in the case 
of a two-sided tolerance interval. 

 

13 Epilogue 

With the GUM standard series, there is an internationally accepted methodology to deal with 
uncertainty in measurements. With a Bayesian theory of measurement uncertainty, there ex-
ists a solid statistical foundation of the GUM standard series which has the splendor to reveal 
the normal methodology of human learning and improving of knowledge. The standard ISO 
11929 extends the methodology of the GUM to decision making under uncertainty. Character-
istic limits according to ISO 11929 can be calculated for practically every measurement prob-
lem. However, as metrology and the GUM are further developing, also ISO 11929 will have 
to be revised in the future to keep track with the development of metrology. 
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15 Appendix: PDFs and their application depending on the available information.  

PDF ( )f x  Formulas Comments 

Normal or Gauss-
ian 2N( , )x     

PDF 
2

2
2

1 ( )
N( , ) ( , ) exp

22
X

x
x f x

   
 

 
     

      2, ; 0x     

Expectation  2E N( , )x     Variance  2 2Var N( , )x     

Standard normal distribution PDF 
2

N

1
( ) exp

22

x
f x


 

  
 

 

Distribution function 
2 /21

Φ( )= d
2

x tx e t




  

Error function 
2

0

1
erf( )= d

2

x tx e t


  

Distribution function for a normal distribution with parameters  and :  

N

1
( )=Φ 1 erf

2 2

x x
F x

 
 

              
 

The limiting theorem of statistics says: any sum of 
arbitrarily distributed random quantities goes for a 
normal distribution. Thus, the normal distribution is 
the limiting PDF for a sum of arbitrarily distributed 
quantities.  

In metrology 
2

2

1 ( )
( , ( )) exp

2 ( )2 (y)
Y

y y
f y y u y

u yu
 

  
  

  is ac-

cording to the PME the exact solution if only y  and 
( )u y  are known. 

Exponential  

Exp( )x   

PDF Exp( ) ( ) 0,else 0 ; 0x
xx f x e x          

Distribution function Exp ( ) 1 xF x e      

Expectation E(Exp( )) 1/x     

Variance 2Var(Exp( )) 1/x    

The exponential distribution is the probability dis-
tribution of the time between events in a Poisson 
point process, i.e., a process in which events occur 
continuously and independently at a constant aver-
age rate as when counting a long-lived radionuclide. 

The exponential distribution is the maximum entro-
py distribution of a random variable 0X   with a 
given and fixed expectation E( )X . 
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PDF ( )f x  Formulas Comments 

Binomial 

Bi( , )k p n  

discrete 

PDF  Bi( , ) ( , )= (1 ) 0,1,2,... , else 0; 0k n k
K

n
k p n f k p n p p k p

k
 

      
 

 

Distribution function Bi
1

( , ) (1 )
k

i n i

i

n
F k p n p p

i

  




 
   

 
  

denotes the rounding functionk    

Expectation   

Variance Var(Bi( , )) (1 )k p n n p p     

The binomial distribution describes the number of 
successes having a probability p in n independent 
Bernoulli experiments which only have the out-
comes success or failure. For the radioactive decay 
this means counting a radionuclide with short half-
life for a counting time t. N is the number of atoms 
at the beginning of the experiment. 

m m mBi( , , ) ( ) (1 )n N nN
n N t t t

n
    

    
 

  

Poisson 

Po( )n   

discrete 

PDF  Po( ) ( ) ! 0; 0,1,2,...n
Nn f n e n n          

Distribution function Po ( )F n p    

Expectation = Variance E(Po( )) Var(Po( ))n n     

When counting a radionuclide with a long half-life 
for a counting time t the number of counts obey to a 
Poisson distribution with the expectation

mE( )n N t    and the variance 

m mVar( ) (1 )n t t N       The parameter  de-

scribes the expected number of events observed. p 
is the probability to find at most n events, if   is 
expected on the average.  

Negative binomi-
al 

NB( , )n r p  

discrete 

PDF 
1

NB( , ) ( , ) (1 ) ; 0,1, 2,3...
1

r n r
N

n
n r p f n r p p p n

r
 

       
 

0r   number of successful trials;  0,1p  probability for success in a single 

trial 

Expectation 
(1 )

E(NB( , ))
r p

n r p
p

 
   

Counting a radionuclide with random influences 
which are characterized by  . 21/ r   

In such cases, the observations are overdispersed 
with respect to a Poisson distribution, for which the 
mean is equal to the variance. Hence a Poisson dis-
tribution is not an appropriate model. 

This results in a continuous mixture of Poisson dis-
tributions where the parameter   is variable. This 
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PDF ( )f x  Formulas Comments 

Variance 
2

2

E(NB( , ))(1 )
Var(NB( , )) E(NB( , ))

n r pr p
n r p n r p

p r

 
    

coefficient of variation 

2
Var(NB( , )) 1 1 1

E(NB( , )) E(NB( , )) E(NB( , ))

n r p

n r p n r p r n r p

 

      

results in a mixing distribution of the Poisson rate 
with gamma distributed parameter  . 

For counting measurements with random influences 
2  is the contribution of the random influences to 

the relative uncertainty. 

Gamma 

Ga( , )x    

PDF for a parametrisation with shape parameter  and a scale parameter   
1

Ga( , ) ( , ) ; 0; , 0
Γ( )

x

X

x e
x f x x

       


   
     

Expectation  E Ga( , ) /x      

Variance   2Var Ga( , ) /x       

Rate with n counted events during the time t with a 
non-informative prior ( ) /Rf r C r   for a stationary 

Poisson process 

1Ga( ,1/ ) ( ) / ( 1)!; ( 0)n r tr n t t r t e n r           

with a shape parameter n   and  a scale parame-

ter t  . E(Ga( , )) /r n t r n t    
2Var(Ga( , )) / /r n t r t n t   

Beta 

L UB( , , , )x x x    
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  1 1
L U

( )
B( , , , ) , 1,..., (1 )

( ) ( )X ix x x f x x i n x x   
 

  
     

 
 

 , 0 0,1x     

Expectation L UE(B( , , , ))x x x
 

 



 

Variance L U 2
Var(B( , , , ))

( ) ( 1)
x x x

  
   




  
 

The parameters of the Beta distribution are calculated as 

Series of indications with lower and upper limits 

L U,x x  with the parameters  

2
2

1 1

x

x
x

s x


 
   

 
 and 

1
1

x
      

 
 

Applied in ISO 11929-4:2020 to multiple measure-
ments of efficiencies. 
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 
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   and 2 2

1

1
( )

1

n
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s
n  



 
   
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PDF ( )f x  Formulas Comments 

 2

L U

L U

L U L U

E(B( , , , ))

1 E(B( , , , )) 1

Var(B( , , , )) E(B( , , , ))

x x

x x x

x x x x x x

  

 
   

 

 
   
 

 

L U

1
1

E(B( , , , ))x x x
 

 
 

    
 

 

2
2

1 1

s

 


 
  

 
 and 

1
1 


    
 

 

 L U

L
L U

U L U L

( , 1,..., ),

1
B( , , , ) B , ,

if i n    

        
   

   

 
     

 

 
 

Scaled and shift-
ed t-distribution

2
1( , ( ) / )nt x x s n n
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 
 

/22

2
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2

/ 2 1 1
( , ( ) / ) 1

1( 1) ( 1) / 2 / /

; ( ) 0

n

n

n x x
t x x s n n

nn n s n s n

x s n







                
 

  

Expectation 2
1E( ( , ( ) / ))nt x x s n n x    

Variance 
2

2
1

1
Var( ( , ( ) / ))

3n

n s
t x x s n n

n n


 


 

1

1 n

i
i

x x
n 

   and 2 2

1

1
( )

1

n

i
i

s x x
n 

  
   

The scaled and shifted t-distribution 
2

1( , ( ) / )nt x x s n n  with 1n    degrees of free-

dom and 
x x

t
s n




/
 finds its application for repeat-

ed measurements. 

 

( 1)/22

t

1
Γ

2
( ) 1

Γ / 2

t
f t




  

 
 

       
   

 

It is applied to series of indications 1,..., nx x  sam-

pled independently from a quantity having a Gauss-
ian distribution, with unknown expectation and un-
known variance. 

Rectangular 

l uR( , )x x x  

PDF  u l l u
l u l u

/ ( ),
R( , ) ( , )

otherwise

1

0X

x x x x
x x x f x x x

 
  


 

Expectation  l u u lE R( , ) ( ) / 2x x x x x   

Variance   2
l u u lVar R( , ) ( ) /12x x x x x   

The rectangular distribution applies to the case of a 
random variable for which only the lower and upper 
limits are known. The quantity is supposed to be-
have randomly between these limits. The GUM S1 
gives also formulas if the limits are inexactly de-
scried. 
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PDF ( )f x  Formulas Comments 

Trapezoidal 

Trap( , , )x a b    

See explicit formulas and figure in chapter 6.4.4 of GUM S1 

Trap( , , )x a b   with 1a a , 1 2b b b   and 1 1 2 2( ) ( ) / ( )b a b a b a       

Sum of two quantities assigned rectangular distribu-
tions with lower and upper limits a1, b1 and a2, b2, 
respectively. 

Triangular

1,l 1,u 2,l 2,uTri( , , , )x x x x x  

See explicit formulas in chapter 6.4.5 of GUM S1 

,l ,lTri( , , , )1 1,u 2 2,ux x x x x  

Sum of two quantities assigned rectangular distribu-
tions with lower and upper limits ,l ,lx x1 2  and 

x x1,u 2,u and the same semi-width  

,l ,l( )x x x x  1,u 1 2,u 2
. 

Log-normal 

2L N( ln( ),s (ln( )))i ix x x

 

PDF 

 
2

2
2

1 1 (ln( ) )
L N( ln( ),s (ln( ))) LN ( , ) exp

22
i i X

x
x x x x

x

 
 

 
     

 

Distribution function 
(ln( ) )

( , )
x

F x
 


   

 
ΦLN  

Expectation    2E LN( , ) exp / 2x       

Median  M LN( , ) exp( )x     

Variance    2 2Var LN( , ) exp( ) 1 exp 2x            

The multiplicative limiting theorem of statistics: 
Any product of arbitrarily distributed random quan-
tities goes for a logarithmic normal distribution. 

The log-normal distribution with   and   being 
the logarithms of the geometric mean and of the 
geometric standard deviation, respectively. It is the 
limiting PDF for a product of arbitrarily distributed 
quantities.  

1

1
ln( ) ln( )

n

i i
i

x x
n




    and 

2 2 2

1

1
(ln( )) (ln( ) ln( ))

1

n

i i i
i

s x x x
n




   
   
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16 Glossary 

The terms and definitions are according to the VIM 3rd ed. (JCGM 2008). 

quantity 

property of a phenomenon, body, or substance, where the property has a magnitude that can 
be expressed as a number and a reference (VIM 3rd ed. 2008, 1.1) 

measurement unit, unit of measurement, unit 

real scalar quantity, defined and adopted by convention, with which any other quantity of the 
same kind can be compared to express the ratio of the two quantities as a number (VIM 3rd ed. 
2008, 1.9) 

International System of Units, SI 

system of units, based on the International System of Quantities, their names and symbols, 
including a series of prefixes and their names and symbols, together with rules for their use, 
adopted by the General Conference on Weights and Measures (CGPM) (VIM 3rd ed. 2008, 
1.16) 

quantity value, value of a quantity, value 

number and reference together expressing magnitude of a quantity (VIM 3rd ed. 2008, 1.19) 

measurement 

process of experimentally obtaining one or more quantity values that can reasonably be at-
tributed to a quantity (VIM 3rd ed. 2008, 2.1) 

metrology 

science of measurement and its application (VIM 3rd ed. 2008, 2.2) 

measurand 

quantity intended to be measured (VIM 3rd ed. 2008, 2.3) 

measurement method, method of measurement 

generic description of a logical organization of operations used in a measurement (VIM 3rd ed. 
2008, 2.5) 

measurement result, result of measurement 

set of quantity values being attributed to a measurand together with any other available rele-
vant information (VIM 3rd ed. 2008, 2.9) 

measured quantity value, value of a measured quantity, measured value 

quantity value representing a measurement result (VIM 3rd ed. 2008, 2.10) 

true quantity value, true value of a quantity, true value 

quantity value consistent with the definition of a quantity (VIM 3rd ed. 2008, 2.11) 

measurement uncertainty, uncertainty of measurement, uncertainty 
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non-negative parameter characterizing the dispersion of the quantity values being attributed to 
a measurand, based on the information used (VIM 3rd ed. 2008, 2.26) 

Type A evaluation of measurement uncertainty, Type A evaluation 

evaluation of a component of measurement uncertainty by a statistical analysis of measured 
quantity values obtained under defined measurement conditions (VIM 3rd ed. 2008, 2.28) 

Type B evaluation of measurement uncertainty, Type B evaluation 

evaluation of a component of measurement uncertainty determined by means other than a 
Type A evaluation of measurement uncertainty (VIM 3rd ed. 2008, 2.29) 

Examples: Evaluations based on information 

- associated with authoritative published quantity values, 
- associated with the quantity value of a certified reference material, 
- obtained from a calibration certificate, 
- about drift, 
- obtained from the accuracy class of a verified measuring instrument, 
- obtained from limits deduced through personal experience. 

standard measurement uncertainty, standard uncertainty of measurement, standard 
uncertainty 

measurement uncertainty expressed as a standard deviation (VIM 3rd ed. 2008, 2.30) 

combined standard measurement uncertainty, combined standard uncertainty 

standard measurement uncertainty that is obtained using the individual standard measurement 
uncertainties associated with the input quantities in a measurement model (VIM 3rd ed. 2008, 
2.31) 

relative standard measurement uncertainty 

standard measurement uncertainty divided by the absolute value of the measured quantity 
value (VIM 3rd ed. 2008, 2.32) 

uncertainty budget 

statement of a measurement uncertainty, of the components of that measurement uncertainty, 
and of their calculation and combination (VIM 3rd ed. 2008, 2.33) 

expanded measurement uncertainty, expanded uncertainty 

product of a combined standard measurement uncertainty and a factor larger than the number 
one (VIM 3rd ed. 2008, 2.35) 

coverage interval 

interval containing the set of true quantity values of a measurand with a stated probability, 
based on the information available (VIM 3rd ed. 2008, 2.36) 

coverage probability 

probability that the set of true quantity values of a measurand is contained within a specified 
coverage interval (VIM 3rd ed. 2008, 2.37) 
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coverage factor 

number larger than one by which a combined standard measurement uncertainty is multiplied 
to obtain an expanded measurement uncertainty (VIM 3rd ed. 2008, 2.38)  

metrological traceability 

property of a measurement result whereby the result can be related to a reference through a 
documented unbroken chain of calibrations, each contributing to the measurement uncertainty 
(VIM 3rd ed. 2008, 2.41) 

measurement model, model of measurement, model 

mathematical relation among all quantities known to be involved in a measurement (VIM 3rd 
ed. 2008, 2.48) 

input quantity in a measurement model, input quantity 

quantity that must be measured, or a quantity, the value of which can be otherwise obtained, 
in order to calculate a measured quantity value of a measurand (VIM 3rd ed. 2008, 2.50) 

output quantity in a measurement model, output quantity 

quantity, the measured value of which is calculated using the values of input quantities in a 
measurement model (VIM 3rd ed. 2008, 2.51) 

influence quantity 

quantity that, in a direct measurement, does not affect the quantity that is actually measured, 
but affects the relation between the indication and the measurement result (VIM 3rd ed. 2008, 
2.52) 

correction 

compensation for an estimated systematic effect (VIM 3rd ed. 2008, 2.53) 

indication 

quantity value provided by a measuring instrument or a measuring system (VIM 3rd ed. 2008, 
4.1) 

blank indication, background indication 

indication obtained from a phenomenon, body, or substance similar to the one under investi-
gation, but for which a quantity of interest is supposed not to be present, or is not contributing 
to the indication (VIM 3rd ed. 2008, 4.2 

detection limit, limit of detection 

measured quantity value, obtained by a given measurement procedure, for which the probabil-
ity of falsely claiming the absence of a component in a material is , given a probability  of 
falsely claiming its presence (VIM 3rd ed. 2008, 4.18) 

instrumental measurement uncertainty 

component of measurement uncertainty arising from a measuring instrument or measuring 
system in use (VIM 3rd ed. 2008, 4.24) 
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maximum permissible measurement error, maximum permissible error, limit of error 

extreme value of measurement error, with respect to a known reference quantity value, per-
mitted by specifications or regulations for a given measurement, measuring instrument, or 
measuring system (VIM 3rd ed. 2008, 4.26) 

probability distribution, distribution 

probability measure induced by a random variable (JCGM 106 2012: 3.1.1) 

distribution function 

function giving, for every value , the probability that the random variable X be less than or 
equal to : (JCGM 106 2012: 3.1.2) 

probability density function, PDF 

derivative, when it exists, of the distribution function (JCGM 106 2012: 3.1.3) 

conformity assessment 

activity to determine whether specified requirements relating to a product, process, system, 
person or body are fulfilled (JCGM 106 2012: 3.3.1) 

specified requirement 

need or expectation that is stated (JCGM 106 2012: 3.3.3) 

tolerance limit, specification limit 

specified upper or lower bound of permissible values of a property (JCGM 106 2012: 3.3.4) 

tolerance interval 

interval of permissible values of a property (JCGM 106 2012: 3.3.5) 

conformance probability 

probability that an item fulfils a specified requirement (JCGM 106 2012: 3.3.7) 

acceptance limit 

specified upper or lower bound of permissible measured quantity values (JCGM 106 2012: 
3.3.8) 

acceptance interval 

interval of permissible measured quantity values (JCGM 106 2012: 3.3.9) 

rejection interval 

interval of non-permissible measured quantity values (JCGM 106 2012: 3.3.10) 

decision rule 

documented rule that describes how measurement uncertainty will be accounted for with re-
gard to accepting or rejecting an item, given a specified requirement and the result of a meas-
urement (JCGM 106 2012: 3.3.12) 

 



114 
 

estimate 

a guess of what the size, value, amount, cost, etc. of something might be 

estimator  

a function of the data that is used to estimate the value of an unknown parameter on the basis 
of a statistical model.  

 




